Главная > Введение в цифровую обработку изображений
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.6. Дискретное преобразование Фурье

Преобразование Фурье (§ 1.5) можно рассматривать как линейное преобразование с ядром

Найдем его дискретное представление по базису

для сигналов с ограниченным на интервале спектром, для которых справедливо представление

Преобразование Фурье такого сигнала равно

Рассмотрим теперь периодический сигнал

Его спектр равен

где -отсчеты спектра сигнала взятого на отрезке (см. табл. 1.2, строка 19). Если Т достаточно велико, а сигнал достаточно быстро спадает до нуля на этом интервале, так что его искажениями в сумме (3.60) за счет наложения периодов можно пренебречь, то Отсюда

причем суммирование по к проводится в пределах

Значения Т и можно всегда выбрать так, чтобы величина была целой. Обозначим ее N. Обозначим также

Здесь выбрано так, чтобы суммирование в (3.62) могло производиться по к от 0 до Тогда получим

Это соотношение называется дискретным преобразованием Фурье

Дискретное преобразование Фурье обратимо:

Его ядро — матрица

является дискретным представлением ядра непрерывного преобразования Фурье.

Формула (3.65) является аналогом (3.3). Отметим, что ее можно получить сразу из (3.3) для базиса

Коэффициенты последовательности приближенно равны отсчетам спектра сигнала периодически продолженного с периодом Т, взятым с шагом Такова связь ДПФ с непрерывным преобразованием Фурье. Из предположения ограниченной протяженности сигнала вытекает, что для его спектра справедлива теорема отсчетов и что, следовательно, он может быть восстановлен по величинам — коэффициентам ДПФ отсчетов сигнала.

Наиболее употребительные свойства одномерного ДПФ приведены в табл. 3.1. Для удобства сопоставления их со свойствами непрерывного преобразования Фурье в правой колонке табл. 3.1 указаны номера соответствующих строк табл. 1.2. Главное отличие ДПФ от

(см. скан)

(см. скан)

(см. скан)

Продолжение табл. 3.1 (см. скан)

непрерывного преобразования Фурье — цикличность, или периодичность: номера отсчетов последовательности и ее ДПФ отсчитываются по модулю N, т. е. как бы по кругу; число точек в цикле равно N (табл. 3.1, строка 2).

По аналогии с одномерным ДПФ, применив двумерную теорему отсчетов к двумерным сигналам и спектрам, можно получить двумерное ДПФ. Обычно используется только такое двумерное ДПФ, которое вытекает из двумерной теоремы отсчетов в прямоугольных координатах:

Оно удобно тем, что факторизуется на два одномерных ДПФ, т. е. является разделимым.

Обратное двумерное ДПФ записывается как

Некоторые свойства двумерного ДПФ приведены в табл. 3.2. Для двумерного ДПФ характерна двумерная цикличность (периодичность). Можно считать, что коэффициенты двумерного ДПФ — это отсчеты двумерного непрерывного спектра сигнала, периодически размноженного на плоскости в прямоугольной системе координат, как на рис. 3.4, а.

Иногда вместо представлений ДПФ в виде сумм (3.64), (3.66) удобнее пользоваться матричными

(см. скан)

Продолжение табл. 3.2 (см. скан)

значениями. В этих обозначениях одномерное ДПФ можно записать так:

где а — матрица-столбец, составленная из отсчетов преобразуемой последовательности ; а — матрица-столбец, составленная из коэффициентов — квадратная матрица ДПФ порядка N (3.66).

Матрица ДПФ относится к классу так называемых унитарных матриц, для которых обратная матрица получается их транспонированием и заменой элементов на комплексно-сопряженные.

Двумерное ДПФ можно записать аналогично (3.69) в виде

где — исходный сигнал и результат его преобразования — матрицы размерностью и — матрицы ДПФ (3.66) размерностью соответственно.

1
Оглавление
email@scask.ru