Главная > Стереометрия. Геометрия в пространстве
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.4. Симметрия параллелепипеда.

Все диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Поэтому противоположные вершины параллелепипеда симметричны относительно этой точки. Следовательно, каждый параллелепипед имеет центр симметрии — точку пересечения его диагоналей (рис. 7.11).

В общем случае осей и плоскостей симметрии параллелепипед не имеет, Прямой, но не прямоугольный параллелепипед всегда имеет ось симметрии — прямую, проходящую через центры симметрии его оснований, и

плоскость симметрии, проходящую через середины его боковых ребер. Если основания прямого параллелепипеда — ромбы (но не квадраты), то появляются еще две оси и две плоскости симметрии (рис. 7.12).

Найдите сами элементы симметрии прямоугольного параллелепипеда, среди граней которого нет квадратов. Если среди граней прямоугольного параллелепипеда есть квадраты, то он является правильной четырехугольной призмой. Симметрия правильных призм рассмотрена в следующем пункте, а симметрия куба — в § 12.

Рис. 7.13

1
Оглавление
email@scask.ru