Главная > Статистическая теория обнаружения сигналов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 2. ШУМЫ

1. Стохастические процессы и их распределения

Обнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов — и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника.

Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях,

они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций.

Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего — ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса.

Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени лежит в интервале между есть

где функция плотности вероятности переменной х. Под этим мы понимаем в применении к вышеприведенному

примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на достаточно малой длине интервала). Во многих случаях не будет зависеть от момента времени, в который производятся измерения. Функция плотности вероятности является основой статистического описания стохастического процесса, но сама по себе она недостаточна, так как ничего не говорит о том, как связано значение х, измеренное в один момент времени, со значениями, измеренными в другие моменты времени.

Обозначим значения временной последовательности измеренные в последовательные моменты времени через Функция плотности совместного распределения вероятностей

определяется утверждением, что вероятность выполнения неравенств

равна Для полного описания непрерывного стохастического процесса требуется задание функций распределения для всех возможных выборов моментов времени для всех положительных целых Все эти функции нормированы так, что выполняется соотношение

в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по

интервалу изменения "лишней" переменной. Например,

Любые переменных для которых выполняется равенство

называются статистически независимыми.

Функция плотности совместного распределения операционно определяется с помощью относительных частот осуществления различных комбинаций значений для и рассматриваемых моментов времени. Но, очевидно, определить полную систему функций распределения таким образом невозможно. Вместо этого для получения гипотетических распределений строится теория процессов птем применения законов физики к ситуациям, возникающим в таких областях науки, как статистическая механика или термодинамика. С помощью теории стохастических процессов вычисляются некоторые средние значения, доступные для наблюдения, и вычисленные значения сравниваются с найденными из опыта. Когда ситуация слишком сложна для такого анализа, как, например, в экономике и, вероятно, даже в метеорологии, для стохастического процесса предлагается простая статистическая "модель". Эта модель дает функцию распределения, содержащую несколько неизвестных параметров, значения которых оцениваются на основе доступных данных. Затем строятся логические заключения и, если возможно, производится сравнение с результатами дальнейших наблюдений. К счастью, существует большая теоретическая база, позволяющая рассматривать электрические шумовые процессы, с которыми приходится встречаться в задачах обнаружения сигналов. Некоторые физические основы будут изложены ниже, в разд. 3. Но сначала мы должны обсудить некоторые понятия, которые будут применяться при анализе стохастических процессов.

Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной,

на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей зависит только от интервалов между измерениями, а не от самих моментов времени Такие стохастические процессы называют стационарными. Если не будет сделано других утверждений, будем считать, что изучаемые временные последовательности обладают этим свойством временной инвариантности или стационарности.

Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими.

Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством

где функция плотности распределения вероятностей одиночного наблюдения. Это среднее значение х не зависит от времени. С другой стороны, среднее по времени х можно определить формулой

Из-за условия стационарности это среднее по времени не зависит от момента времени в который начинается усреднение. Если, кроме того, стохастический процесс эргодический, То же самое справедливо для математического ожидания других функций аргумента х.

Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса.

Приведем некоторые величины, характеризующие стохастический процесс. Одна из таких величин, среднее, была определена выше. Среднеквадратичное значение аналогично дается равенствами

Если напряжение на сопротивлении то средняя мощность, рассеиваемая на этом сопротивлении, равна Отсюда получим квадрат среднеквадратичного отклонения, или дисперсию, случайной величины х

где черта указывает среднее или по ансамблю, или по времени.

Квадратный корень из дисперсии, или среднеквадратичное отклонение, характеризует величину флуктуаций около среднего х в произвольно выбранный момент времени. Связь между величиной в некоторый момент времени и ее значениями в другие моменты времени дается

автоковариацией, определяемой формулой

Для стационарных временных последовательностей автоковариация зависит только от разности и превращается в функцию автоковариации которая также может быть определена как среднее по времени

Функция автоковариации удовлетворяет следующим соотношениям:

Вообще функция автоковариации стремится к нулю при возрастании х, так как значения измеренные через большие интервалы времени, имеют тенденцию стать статистически независимыми. Часто является колоколообразной функцией с одним пиком при причем х, для которого равна, например, половине пикового значения, можно называть временем корреляции стохастического процесса. Грубо говоря, эта величина измеряет длину такого интервала времени, выше которого характеризующие процесс величины приближенно можно считать независимыми переменными со случайным распределением.

Если даны два ансамбля стационарных временных последовательностей функцию ковариации можно определить формулой

Функция ковариации характеризует связь между значениями двух временных последовательностей; она часто оказывается полезной при исследовании возможных причинных связей двух эмпирических последовательностей времени.

1
Оглавление
email@scask.ru