Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 2. ШУМЫ1. Стохастические процессы и их распределенияОбнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов — и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника. Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях, они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций. Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего — ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса. Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени
где примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на Обозначим значения временной последовательности
определяется утверждением, что вероятность выполнения неравенств
равна
в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по интервалу изменения "лишней" переменной. Например,
Любые
называются статистически независимыми. Функция плотности совместного распределения Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной, на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими. Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством
где
Из-за условия стационарности это среднее по времени не зависит от момента времени Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса. Приведем некоторые величины, характеризующие стохастический процесс. Одна из таких величин, среднее, была определена выше. Среднеквадратичное значение аналогично дается равенствами
Если
где черта указывает среднее или по ансамблю, или по времени. Квадратный корень из дисперсии, или среднеквадратичное отклонение, характеризует величину флуктуаций около среднего х в произвольно выбранный момент времени. Связь между величиной автоковариацией, определяемой формулой
Для стационарных временных последовательностей автоковариация зависит только от разности
Функция автоковариации удовлетворяет следующим соотношениям:
Вообще функция автоковариации Если даны два ансамбля стационарных временных последовательностей
Функция ковариации характеризует связь между значениями двух временных последовательностей; она часто оказывается полезной при исследовании возможных причинных связей двух эмпирических последовательностей времени.
|
1 |
Оглавление
|