Главная > Физика для всех. Введение в сущность и структуру физики. Том 1. Классическая физика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

МАГНИТНЫЕ СИЛЫ

«Первые опыты по вопросу, рассматриваемому в настоящем труде, связаны с лекциями об электричестве, гальванизме и магнетизме, читанными мною прошедшей зимой» [1].

В ту зиму 1819-1820 гг. электричеством называли силы, действующие между неподвижными зарядами (закон Кулона). К гальванизму же относились те явления, которые наблюдались при движении зарядов, т. е. при наличии тока, а к магнетизму — явления, связанные с такими загадочными предметами, как магниты и стрелки компасов, находящиеся в магнитном поле Земли. Все три вида явлений - считались самостоятельными; хотя многие чувствовали, что между ними должна существовать некая связь, обнаружить ее никому не удавалось. В ту зиму Эрстед занимался тем, что пропускал гальванический ток по проводу, расположенному параллельно небольшой магнитной стрелке, в результате чего он обнаружил (фиг. 299), что:

«В данном случае стрелка изменит свое положение, и полюс, находящийся под той частью соединительной проволоки, которая ближе к отрицательному концу гальванического аппарата отклонится к западу» [2].

Мы видели, что силы, действующие между заряженными частицами, являются чисто ньютоновскими. Кулоновская сила не только подчиняется третьему закону, но и совпадает по форме с гравитационной.

Фиг. 299.

Если бы на кулоновской силе наука кончалась, то в процессе изучения гравитационных сил можно было бы ограничиться небольшой ссылкой на то, что в некоторых случаях сходные силы действуют и между так называемыми заряженными частицами. Величины этих сил различаются: помимо притяжения возможно отталкивание частиц, но в остальном эти силы неразличимы. Однако наука не кончается на силах Кулона. При дальнейшем изучении электрических сил обнаруживается столько разнообразных и тонких эффектов, что мы вынуждены не только расширять пределы применимости ньютоновской системы, но в конце концов выйти за ее рамки.

Открытие Эрстеда возвестило о начале активных исследований в этой области; в течение последующих десяти лет Ампер и Фарадей разработали теорию магнитных взаимодействий токов. Эрстеду удалось не только установить эффект воздействия движущегосязаряда, или тока, на магнитную стрелку, но и обнаружить удивительное свойство этого эффекта: магнитная стрелка устанавливалась перпендикулярно направлению движения тока (фиг. 300).

Фиг. 300.

Более того, оказалось, что в плоскости, перпендикулярной проводу, направления стрелки образуют замкнутые окружности. Это можно проиллюстрировать с помощью простенького опыта, которым любят забавляться дети в дождливые дни. Если насыпать на бумагу мелкие металлические стружки (каждая из которых ведет себя, как маленькая магнитная стрелка), они наглядно передадут конфигурацию поля для различных систем токов (фото 34).

Наиболее удивительная особенность этого открытия, которая отчасти объясняет, почему оно не было сделано ранее, связана с тем, что неподвижный заряд не оказывает никакого воздействия на магнитную стрелку. Чтобы вызвать эффект, который обнаружил Эрстед, необходимо, чтобы заряд пришел в движение. Таким образом, мы впервые встречаемся с силой, которая оказывается зависящей от движения тел, порождающих ее.

Менее чем через год (2 октября 1820 г.) Ампер опубликовал в журнале «Annals of Chemistry and Physics» работу, в которой он установил, что два токонесущих провода взаимодействуют друг с другом. Он

обнаружил, что два провода, по которым текут токи в одном направлении, притягиваются, а два провода, по которым токи текут в противоположные стороны, отталкиваются. Казалось, что эти новые силы существенно отличались от электрических, так как они не зависели от величины нескомпенсированного заряда в проводах.

Фиг. 301. Длинный провод, по которому течет ток притягивает провод длины по которому течет ток

Если имеется очень длинный токонесущий провод и параллельно ему расположен второй провод, как показано на фиг. 301, то первый провод будет притягивать второй, если ток в последнем течет в том же направлении, что и в первом, и, будет отталкивать, если направление тока противоположное. Величина силы зависит от расстояния между проводами, от токов в проводах и от длины второго провода; в системе СГС выражение для силы имеет вид

Здесь — ток в первом проводе, — ток во втором проводе, — длина второго провода и — расстояние между проводами. Буква с, стоящая в знаменателе (20.9), обозначает постоянную:

Она имеет размерность скорости, и сейчас мы знаем, что ее величина совпадает со скоростью света.

Чтобы дать представление о величине силы, которая действует между проводами, положим, что длина второго провода 1 см, отстоит он от первого на расстоянии тоже 1 см, а токи в проводах равны 10 А.

Таблица 10

(Для перевода амперов в единицы СГС обратимся к табл. 10: — с единиц СГС, т. е. с статампер.) Подставляя эти величины в (20.9), получаем

Сила 2 дин не очень велика (порядка двух тысячных грамма), однако измерить ее легко. Для сравнения укажем, например, что если в проводе диаметром 0,1 см нескомпенсирован всего лишь один электрон на каждые атомов, то возникает сила 108 дин (порядка на каждый сантиметр провода.

Мы могли бы ожидать, что ток окажет силовое воздействие на движущийся заряд. Именно так и происходит. Сила, действующая на провод, фактически приложена к движущимся зарядам, создающим ток. Она проявляется как сила, приложенная к проводу. С помощью электронной пушки можно наглядно продемонстрировать силу, с которой провод с током действует на пучок заряженных частиц (электронов) (фиг. 302).

Фиг. 302.

Невооруженным глазом видно, что пучок электронов отклоняется под действием силы, вызванной током, текущим по проводу.

Качественные свойства этой силы оказываются сложными и весьма

необычными. Рассмотрим провод, по которому течет ток (фиг. 303). Если электрон движется в направлении тока сила отклоняет его от провода; если же он движется против тока сила приближает его в проводу. Если направление движения электрона произвольно относительно провода, действующая сила все равно изменяет это направление; однако в любом случае действующая сила будет перпендикулярна скорости электрона (фиг. 304), а ее величина будет прямо пропорциональна этой скорости и обратно пропорциональна расстоянию между проводом и электроном.

Фиг. 303.

Фиг. 304.

Таким образом, мы обнаружили силу, которая зависит не только от положения электрона, но и от его скорости и направления движения. Свойства этой силы гораздо сложнее, чем свойства сил, рассмотренных ранее. Для дальнейшего ее изучения удобно ввести понятие магнитного поля.

1
Оглавление
email@scask.ru