Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
26. КИНЕТИЧЕСКАЯ ТЕОРИЯ(МЕХАНИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ТЕПЛОТЫ, ТЕМПЕРАТУРЫ И ЭНТРОПИИ)Понятия теплоты, температуры и энтропии привлекательны прежде всего тем, что они вовсе не связаны с такими атрибутами механики, как сила, масса и ускорение. Нам не нужно рассматривать никаких гипотетических частиц или строить многочисленные догадки о природе вещества. То, что понятия температуры, теплоты и энтропии не связаны с механикой, многим казалось большим преимуществом. Эти величины можно непосредственно наблюдать на опыте. Например, температуру можно определять по уровню поднятия столбика ртути в термометре, не выдвигая никаких предположений о частицах, составляющих вещество. В этом смысле так называемый энергетизм казался альтернативой механике Ньютона, т. е. альтернативой предполагаемой корпускулярной природе вещества. В конце девятнадцатого века выдвигалось множество различных мнений по вопросу о том, действительно ли энергетизм столь же содержателен, как и механика Ньютона, и можно ли с его помощью вывести все разнообразные свойства ньютоновской системы, начиная с движений планет и приливов и кончая прецессией земной оси. Только в 1905 г. появилась статья Альберта Эйнштейна, посвященная атомному, или корпускулярному, объяснению так называемого броуновского движения, которая окончательно решила вопрос о необходимости введения гипотезы корпускулярной природы вещества. Тем временем люди, подобные Оствальду и Дюгему, доказывали (на основании принципа экономии мышления), что, поскольку нет необходимости в предположении существования атомов, такие предположения излишни. Нам кажется, однако, что принцип экономии мышления не является лучшим методом физических исследований, хотя, разумеется, были и исключения. В рассматриваемом случае (это исторический факт) плодотворным оказался путь дополнительных гипотез. Оказалось очень полезным дать механическую интерпретацию понятий температуры и теплоты. Попытка Максвелла получить механическую интерпретацию электромагнитного поля (введением некой среды, в которой напряжение и натяжение эквивалентны электромагнитному полю) не была плодотворной — в этом случае абстрактное понятие электромагнитного поля оказалось значительно более глубоким, чем его механическая интерпретация. Но сейчас всякий согласится с тем, что механическая интерпретация температуры и теплоты глубже, чем эти абстрактные понятия. Попытаемся поэтому построить наглядную механическую модель, с помощью которой мы сможем объяснить такие понятия, как температура, теплота и даже энтропия. Механическая интерпретация температуры в принципе не обязательна — мы могли бы воспринимать ее такой, какая она есть. Однако было бы очень полезно понять с помощью модели движущихся частиц, что представляет собой энтропия. То, что мы собираемся сделать, по существу, очевидно. Мы вводим модель газа и изучаем следствия законов движения Ньютона, примененных к каждой частице газа, надеясь определить поведение всей системы в целом. Мы уже поступили аналогичным образом при изучении твердых тел. Тогда мы предполагали, что некая внутренняя система сил удерживает частицы на неизменных расстояниях друг от друга. Теперь мы введем модель газа и покажем, используя только механические понятия (массу, длину, время и законы движения), как найти величины, которые можно отождествить с теплотой, температурой и энтропией. Если нам это удастся, мы получим очень важный результат. Ибо в таком случае окажется вовсе не обязательным введение этих понятий в основу науки физики. Попытки такого рода предпринимались еще Даниилом Бернулли. В трактате по гидродинамике, опубликованном в 1738 г., он рассматривал следствия из предположения, что газ состоит из большого числа быстро движущихся частиц. Он писал, например: «Представьте себе вертикально поставленный цилиндрический сосуд поверх которой лежит груз Р. Пусть в пространстве Идея Бернулли состояла в том, что наблюдаемое давление газа объясняется фактом существования большого числа частиц, движущихся с большими скоростями и соударяющихся со стенками сосуда; именно эту идею мы сейчас разовьем.
Фиг. 374. Рисунок из работы Д, Бернулли [1]. Температуру и энтропию можно интерпретировать с помощью механических понятий не только в случае газа, но и в случаях твердых тел и жидкостей. Однако в твердых телах и жидкостях система внутренних сил очень сложна, и провести такую интерпретацию довольно затруднительно. В случаеже газа можно считать, что вся механическая энергия, которая превращается в тепло, переходит в кинетическую энергию частиц, образующих газ. Поскольку выражение для кинетической энергии одной частицы имеет очень простой вид (выражение для потенциальной энергии частиц, образующих твердое тело или жидкость, может быть очень сложным), мы в состоянии для многих газов проанализировать, каким образом механическая энергия превращается в тепловую энергию. Для этого мы сделаем сейчас небольшое отступление и изучим свойства газов. Прежде всего мы ознакомимся с их поведением, известным по данным наблюдений. Это позволит нам получить важные сведения о шкалах температуры.
|
1 |
Оглавление
|