Главная > Расположения на плоскости, на сфере и в пространстве
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 11. Исторические замечания

Теория выпуклых тел есть обширная область геометрии, основоположниками которой являются Я. Штейнер, Г. Брунн, Г. Минковский и др. Кажется, что со словами Мипковского: «Меня интересует все, что выпукло!» соглашались многие математики, так как этот изящный раздел математики еще и сегодня активно развивается. Обзор этой теории содержится в превосходной книге Боннезена и Фенхеля более специальный характер имеет монография А. Д. Александрова . Относительно понятий дифференциальной геометрии, встречающихся в гл. I и ниже, укажем на книгу Бляшке [2].

Аффинное преобразование, а также полярное преобразование относительно кривой или поверхности порядка — это классические понятия проективной геометрии; их подробное изложение имеется во всех учебниках аналитической и проективной геометрии, например в книге Шенфлисса и Дена [1]. Неравенство (2,1) содержится в работах [18, 20] автора.

Указанные в § 3 необходимые условия, определяющие экстремальный -угольник, вписанный в выпуклую фигуру и описанный около нее, были известны еще Штейнеру. На вопросы существования решений экстремальных задач впервые обратили внимание уже Дирихле и в особенности Вейерштрасс. Первое прямое, совершенно элементарное доказательство неравенств (3,1) и (3,2) принадлежит Кюршаку [1]. К неравенству (3,3) автор пришел в связи с задачей о теснейшем расположении кругов, которой впоследствии будет уделено много внимания Столь же простое доказательство второго неравенства (3,1) мне не известно.

Простые следствия (3,4) и (3,5) неравенства (3,1) имеются в работе автора [18].

Подробные исторические сведения об изопериметрической задаче, кроме уже упомянутой книги Боннезена и Фенхеля [1], имеются в замечательной маленькой книжке Бляшке [1] и в энциклопедической статье Штейница [1]. Понятие внутренней параллельной оболочки введено Ф. Риссом [1] в 1930 г. То обстоятельство, что с помощью этого понятия можно вывести простым способом установленное Боннезеном неравенство (4,5) было замечено Секефальви-Надем [1] (см. сноску 5 в этой работе Секефальви-Надя).

Желание дать чисто элементарно-геометрическое доказательство изопериметрического неравенства (4,1) неизбежно наталкивается на ту трудность, что сами понятия объема и периметра фигуры не являются элементарно-геометрическими. Эту трудность можно обойти, если попытаться доказать изопериметрическое неравенство для случая многоугольника; общий случай изопериметрического неравенства получается отсюда предельным переходом, которого требует само опреде ение площади и периметра. На этом пути использование неэлементарных соображений ограничивается лишь абсолютно необходимым. Боль [1], который нашел доказательство с помощью внутренней параллельной оболочки независимо от Секефальви-Надя, считал, что это есть первое «действительно простое» доказательство изопериметрического неравенства для многоугольников, которое исходит из элементарных соображений. Заметим еще, что принадлежащее Сантало первое доказательство изопериметрического неравенства методами интегральной геометрии (Бляшке [4] [24]) в случае многоугольника очень легко перевести на язык элементарной геометрии и что это доказательство, пожалуй, проще, чем доказательство с помощью внутренней параллельной оболочки. Этим способом можно даже вывести неравенство

справедливое также для любого невыпуклого многоугольника; здесь — произвольная величина, заключающаяся между радиусами вписанного и описанного круга (см. Фейеш Тот [35]).

Еще одно простое доказательство указал Хадвигер 14].

Неравенство (5,1) было выведено Л. Фейером в процессе математического соревнования с Лораном Этвешем в 1897 г. (ср. Т. Радо 11 ]). Можно, однако, предположить, что это неравенство на самом деле гораздо старше. Мы приведем здесь красивое доказательство этого неравенства, принадлежащее рано умершему венгерскому математику И. Адаму; это доказательство можно перенести также и на случай пространства. Рассмотрим окружность К, проходящую через середины сторон треугольника ; радиус ее, очевидно, равен Так как К является вписанной окружностью некоторого треугольника, гомотетичного первоначальному треугольнику и содержащего его внутри себя, то К не меньше, чем окружность, вписанная в ; при этом может случиться, что К совпадает с этой окружностью. Стало быть, мы имеем где равенство достигается только в указанном выше особом случае, т. е. когда треугольник — равносторонний.

Неравенство (5,2) было предложено Шрейбером [1]; его доказательство вытекает из более сильного неравенства (5,3), выведенного автором [23]. Полное доказательство неравенства (5,4) было дано Мордетом [1,2]. Простое доказательство этого красивого неравенства методами элементарной геометрии до сих пор неизвестно. Эквивалентность неравенств (5,5) и (5,6) была замечена автором [23].

Чтобы указать новые точки зрения, которые могут быть полезны при пространственных исследованиях, отметим еще одно неравенство, относящееся к треугольнику: если и -радиусы вневписанных и описанного кругов треугольника, то

где означает степенное среднее порядка k [25].

Первая часть этого неравенства легко усматривается непосредственно; вторую нашел Хайош [1], после того, как Барон [1] и Эрдеш [1] доказали неравенство шах а автор — неравенство

В связи с § 6 и § 7 укажем, кроме уже цитированной книги Брюккнера, также превосходные учебные книги Штейн та [1], Коксетера [1] и Александрова [2].

1
Оглавление
email@scask.ru