Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике 9. ТРАНСПОРТНАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯИзложенный в предыдущих параграфах симплекс-метод решения задачи линейного программирования является универсальным и применим для решения любых таких задач. Однако существуют некоторые частные типы задач линейного программирования, которые, в силу некоторых особенностей своей структуры, допускают решение более простыми методами. К ним относится, в частности, так называемая транспортная задача. Классическая транспортная задача линейного программирования формулируется следующим образом. Имеется пунктов отправления: в которых сосредоточены запасы какого-то однородного товара (груза) в количестве соответственно единиц. Кроме того, имеется пунктов назначения подавших заяки соответственно на единиц товара. Предполагается, что сумма всех заявок равна сумме всех запасов:
Известна стоимость перевозки единицы товара от каждого пункта отправления до каждого пункта назначения в j. Таблица (матрица) стоимостей перевозки задана:
Требуется составить такой план перевозок, при котором все заявки были бы выполнены, и при этом общая стоимость всех перевозок была минимальна. При такой постановке задачи показателем эффективности плана перевозок является стоимость; поэтому поставленную задачу точнее называют транспортной задачей по критерию стоимости. Дадим этой задаче математическую формулировку. Обозначим — количество груза, отправляемого из пункта отправления пункт назначения Неотрицательные переменные (число которых, очевидно, равно должны удовлетворять следующим условиям: 1. Суммарное количество груза, направляемое из каждого пункта отправления во все пункты назначения, должно быть равно запасу груза в данном пункте. Это даст нам условий-равенств:
или, короче,
2. Суммарное количество груза, доставляемое в каждый пункт назначения изо всех пунктов отправления, должно быть равно заявке, поданной данным пунктом. Это даст условий-равенств:
или, короче,
3. Суммарная стоимость всех перевозок, т. е. сумма величин умноженных на соответствующие стоимости должна быть минимальной:
или, гораздо короче,
где знак двойной суммы 2 2 означает, что суммирование производится по всем комбинациям индексов , т. е. по всем комбинациям пунктов отправления с пунктами назначения. Функция (9.4) линейна, ограничения - равенства (9.2), (9.3) также линейны. Перед нами — типичная задача линейного программирования с ограничениями-равенствами (ОЗЛП). Как и всякую другую задачу линейного программирования, ее можно было бы решить симплекс-методом, но данная задача имеет некоторые особенности, позволяющие решить ее более просто. Причиной является то, что все коэффициенты при переменных в уравнениях (9.2), (9.3) равны единице. Кроме того, имеет значение структура связей между условиями. Нетрудно убедиться, что не все уравнений нашей задачи являются независимыми. Действительно, складывая между собой все уравнения (9.2) и все уравнения (9.3), мы должны получить одно и то же, в силу условия (9.1). Таким образом, условия (9.2), (9.3) связаны одной линейной зависимостью, и фактически из этих уравнений только а не являются линейно независимыми. Значит, ранг системы уравнений (9.2), (9.3) равен
а, следовательно, можно разрешить эти уравнения относительно базисных переменных, выразив их через остальные, свободные. Подсчитаем количество свободных переменных. Оно равно:
Мы знаем, что в задаче линейного программирования оптимальное решение достигается в одной из вершин ОДР, где по крайней мере k переменных обращаются в нуль. Значит, в нашем случае для оптимального плана перевозок по крайней мере значений должны быть равны нулю. Условимся о терминологии. Значения количества единиц груза, направляемых из пункта в пункт В, мы будем называть перевозками. Любую совокупность значений будем называть планом перевозок, или просто планом. План будем называть допустимым, если он удовлетворяет условиям (9.2), (9.3) (так называемым «балансовым условиям»): все заявки удовлетворены, все запасы исчерпаны. Допустимый план будем называть опорным, если в нем отличны от нуля не более базисных перевозок а остальные перевозки равны нулю. План будем называть оптимальным, если он, среди всех допустимых планов, приводит к наименьшей стоимости всех перевозок. Перейдем к изложению методов решения транспортной задачи (ТЗ). Эти методы не требуют манипуляций с симплекс-таблицами, а сводятся к более простым операциям непосредственно с таблицей, где в определенном порядке записаны все условия ТЗ. Такую таблицу мы будем называть транспортной таблицей. В транспортной таблице записываются — пункты отправления и назначения, — запасы, имеющиеся в пунктах отправления, — заявки, поданные пунктами назначения, — стоимости перевозок из каждого пункта отправления в каждый пункт назначения. Стоимости перевозок мы будем помещать в правом верхнем углу каждой ячейки, с тем чтобы в самой ячейке при составлении плана помещать перевозки Образец транспортной таблицы дан в табл. 9.1. Таблица 9.1
Для краткости в дальнейшем будем обозначать пункты отправления — ПО, пункты назначения — ПН. В правом верхнем углу каждой клетки проставлены стоимости перевозки единицы товара (груза) из ПО в ПН . В правом столбце помещены запасы товара в каждом ПО, в нижней строке — заявки, поданные каждым ПН. Для ТЗ сумма запасов равна сумме заявок; общее значение этой суммы записывается в правой нижней ячейке таблицы. Выше мы показали, что ранг системы уравнений-ограничений равен , где — число строк, а — число столбцов транспортной таблицы. Значит, в каждом опорном плане, включая оптимальный, будут отличны от нуля не более, чем перевозок. Ячейки (клетки) таблицы, в которых мы будем записывать эти отличные от нуля перевозки, условимся называть базисными, а остальные (пустые) свободными. Таким образом, решение Т3 свелось к следующему. Найти такие вначения положительных перевозок, которые, будучи проставлены в базисных клетках транспортной таблицы, удовлетворяли бы следующим условиям: — сумма перевозок в каждой строке таблицы должна быть равна запасу данного ПО; — сумма перевозок в каждом столбце должна быть равна заявке данного ПН; — общая стоимость перевозок — минимальная. В дальнейшем все действия по нахождению решения Т3 будут сводиться к преобразованию транспортной таблицы 9.1. При описании этих преобразований нам удобно будет пользоваться нумерацией клеток таблицы (подобной нумерации клеток шахматной доски). Клеткой или, короче, клеткой мы будем называть клетку, стоящую в строке и столбце транспортной таблицы. Например, самая верхняя левая клетка будет обозначаться (1. D. стоящая под ней (2, 1) и т. д.
|
1 |
Оглавление
|