Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ. ОПТИМИЗАЦИЯ РЕШЕНИЯ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИВ предыдущем параграфе мы рассмотрели самый простой, полностью детерминированный случай, когда все условия операции К сожалению, этот простейший случай не так уж часто встречается на практике. Гораздо более типичен случай, когда не все условия, в которых будет проводиться операция, известны заранее, а некоторые из них содержат элемент неопределенности. Например, успех операции может зависеть от метеорологических условий, которые заранее неизвестны, или от колебаний спроса и предложения, заранее трудно предвидимых, связанных с капризами моды, или же от поведения разумного противника, действия которого заранее неизвестны. В подобных случаях эффективность операции зависит уже не от двух, а от трех категорий факторов: — условия выполнения операции — неизвестные условия или факторы — элементы решения Пусть эффективность операции характеризуется некоторым показателем W, зависящим от всех трех групп факторов. Это мы запишем в виде общей формулы:
Если бы условия При заданных условиях Это — уже другая, не чисто математическая задача (недаром в ее формулировке сделана оговорка «по возможности»). Наличие неизвестных факторов Давайте будем честны: неопределенность есть неопределенность. Если условия выполнения операции неизвестны, мы не имеем возможности так же успешно организовать ее, как мы это сделали бы, если бы располагали большей информацией. Поэтому любое решение, принятое в условиях неопределенности, хуже решения, принятого во впол «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами». Задачи о выборе решения в условиях неопределенности встречаются нам в жизни на каждом шагу. Пусть, например, мы собрались ехать в отпуск, взяв с собой чемодан ограниченного объема, причем вес чемодана не должен превышать того, при котором мы можем носить его без посторонней помощи (условия Эту задачу мы, разумеется, решаем без всякого математического аппарата, хотя, по-видимому, не без опоры на какие-то численные данные (хотя бы на вероятности морозной или дождливой погоды в районах путешествия в данное время года). Однако, если нужно принять более серьезное и ответственное решение (например, о характеристиках проектируемой плотины в районе возможных паводков, или о выборе типа посадочного устройства для посадки на планету с неизвестными свойствами поверхности, или о выборе образца вооружения для борьбы с противником, характеристики которого заранее неизвестны), то выбору решения в обязательном порядке должны быть предпосланы математические расчеты, облегчающие этот выбор и сообщающие ему, в доступной мере, черты разумности. Применяемые при этом методы существенно зависят от того, какова природа неизвестных факторов Наиболее простым и благоприятным для расчетов является случай, когда неизвестные факторы Пусть, например, мы рассматриваем рабйту железнодорожной сортировочной станции, стремясь оптимизировать процесс обслуживания прибывающих на эту станцию грузовых поездов. Заранее неизвестны ни точные моменты прибытия поездов, ни количество вагонов в каждом поезде, ни адреса, по которым направляются вагоны. Все эти характеристики представляют собой случайные величины, закон распределения каждой из которых (и их совокупности) может быть определен по имеющимся данным обычными методами математической статистики. Аналогично, в каждой военной операции присутствуют случайные факторы, связанные с рассеиванием снарядов, со случайностью моментов обнаружения целей и т. п. В принципе все эти факторы могут быть изучены методами теории вероятностей, и для них могут быть получены законы распределения (или, по крайней мере, числовые характеристики). В случае, когда неизвестные факторы, фигурирующие в операции — — искусственное сведение к детерминированной схеме; — «оптимизация в среднем». Остановимся более подробно на каждом из этих приемов. Первый прием сводится к тому, что неопределенная, вероятностная картина явления приближенно заменяется детерминированной. Для этого все участвующие в задаче случайные факторы Этот прием применяется по преимуществу в грубых, ориентировочных расчетах, когда диапазон случайных изменений величин Второй прием («оптимизация в среднем»), более сложный, применяется, когда случайность величин Рассмотрим этот случай более подробно. Пусть показатель эффективности W существенно зависит от случайных факторов (будем для простоты считать их случайными величинами)
Такую оптимизацию мы будем называть «оптимизацией в среднем». А как же с элементом неопределенности? Конечно, в какой-то мере он сохраняется. Успешность каждой отдельной операции, осуществляемой при случайных, заранее неизвестных значениях Для того, чтобы составить себе представление о том, чем мы рискуем в каждом отдельном случае, желательно, кроме математического ожидания показателя эффективности, оценивать также и его дисперсию (или среднее квадратическое отклонение). Наиболее трудным для исследования является тот случай неопределенности, когда неизвестные факторы Например, мы знаем, что на Марсе возможно наличие органической/кизни, и некоторые ученые даже считают его весьма вероятным, несовершенно невозможно подсчитать эту вероятность на основе каких-либо статистических данных. Другой пример: предположим, что эффективность проектируемого вооружения сильно зависит от того, будет ли предполагаемый противник к моменту начала боевых действий располагать средствами защиты, и если да, то какими именно? Очевидно, нет никакой возможности подсчитать вероятности этих гипотез — самое большее, их можно назначить произвольно, что сильно повредит объективности исследования. В подобных случаях, вместо произвольного и субъективного назначения вероятностей с дальнейшей «оптимизацией в среднем», рекомендуется рассмотреть весь диапазон возможных условий Действительно, рассмотрим случай, когда эффективность операции W зависит, помимо заданных условий
Такое решение, оптимальное для данной совокупности условий В настоящее время полноценной математической «теории компромисса» еще не существует, хотя в теории решений и имеются некоторые попытки в этом направлении (см., например, § 13 гл. 9 настоящей книги). Обычно окончательный выбор компромиссного решения осуществляется человеком, который, опираясь на расчеты, может оценить и сопоставить сильные и слабые стороны каждого варианта решения в разных условиях и на основе этого сделать окончательный выбор. При этом необязательно (хотя иногда и любопытно) знать точный локальный оптимум для каждой совокупности условий В последнюю очередь рассмотрим своеобразный случай, возникающий в так называемых конфликтных ситуациях, когда неизвестные параметры При выборе решений в подобных случаях может оказаться полезным математический аппарат так называемой теории игр — математической теории конфликтных ситуаций (см. гл. 10). Модели конфликтных ситуаций, изучаемые в теории игр, основаны на предположении, что мы имеем дело с разумным и дальновидным противником, всегда выбирающим свое поведение наихудшим для нас (и наилучшим для себя) способом. Такая идеализация конфликтной ситуации в некоторых случаях может подсказать нам наименее рискованное, «перестраховочное» решение, которое необязательно принимать, но во всяком случае полезно иметь в виду. Наконец, сделаем одно общее замечание. При обосновании решения в условиях неопределенности, что бы мы ни делали, элемент неопределенности остается. Поэтому неразумно предъявлять к точности таких решений слишком высокие требования. Вместо того, чтобы после скрупулезных расчетов однозначно указать одно-единственное, в точности оптимальное (в каком-то смысле) решение, всегда лучше выделить область приемлемых решений, которые оказываются несущественно хуже других, какой бы точкой зрения мы ни пользовались. В пределах этой области могут произвести свой окончательный выбор ответственные за него лица.
|
1 |
Оглавление
|