Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ. ДЕТЕРМИНИРОВАННЫЙ СЛУЧАЙРассмотрим задачу исследования операций в общей постановке, безотносительно к виду и цели операции. Пусть имеется некоторая операция О, т. е. управляемое мероприятие, на исход которого мы можем в какой-то мере влиять, выбирая тем или другим способом зависящие от нас параметры. Эффективность операции характеризуется каким-то численным критерием или показателем W, который требуется обратить в максимум (случай, когда его требуется обратить в минимум, сводится к предыдущему и отдельно не рассматривается). Предположим, что тем или иным способом математическая модель операции построена; она позволяет вычислить показатель эффективности W при любом принятом решении, для любой совокупности условий, в которых выполняется операция. Рассмотрим сначала наиболее простой случай: все факторы, от которых зависит успех операции, делятся на две группы: — заданные, заранее известные факторы (условия проведения операции) — зависящие от нас факторы (элементы решения) Этот случай, в котором факторы, влияющие на исход операции, либо заранее известны, либо зависят от нас, мы будем называть детерминированным. Заметим, что под «заданными условиями» операции Показатель эффективности W зависит от обеих групп факторов: как от заданных условий, так и от элементов решения. Запишем эту зависимость в виде общей символической формулы:
Так как математическая модель построена, будем считать, что зависимость (3.1) нам известна, и для любых Тогда задачу исследования операций можно математически сформулировать так: При заданных условиях Перед нами — типично математическая задача, относящаяся к классу так называемых вариационных задач. Методы решения таких задач подробно разработаны в математике. Простейшие из этих методов («задачи на максимум и минимум») хорошо известны каждому инженеру. Для нахождения максимума или минимума (короче, экстремума) функции нужно продифференцировать ее по аргументу (или аргументам, если их несколько), приравнять производные нулю и решить полученную систему уравнений. Однако, этот простой метод в задачах исследования операций имеет ограниченное применение. Причин этому несколько. 1. Когда аргументов 2. В случае, когда на элементы решения 3. Наконец, производных, о которых идет речь, может вовсе не существовать, например, если аргументы Общих математических методов нахождения экстремумов функций любого вида при наличии произвольных ограничений не существует. Однако для случаев, когда функция и ограничения обладают определенными свойствами, современная математика предлагает ряд специальных методов. Например, если показатель эффективности W зависит от элементов решения Если эти функции обладают другими свойствами (на-пример, выпуклы или квадратичны), применяется аппарат «выпуклого» или «квадратичного» программирования [2], более сложный по сравнению с линейным программированием, но все же гбзволяющий в приемлемые сроки найти решение. Если операция естественным образом расчленяется на ряд «шагов» или «этапов» (например, хозяйственных лет), а показатель эффективности W выражается в виде суммы показателей Если операция описывается обыкновенными дифференциальными уравнениями, а управление, меняющееся со временем, представляет собой некоторую функцию x(t), то для нахождения оптимального управления может оказаться полезным специально разработанный метод Л. С. Понтрягина [3]. Таким образом, в рассматриваемом детерминированном случае задача отыскания оптимального решения сводится к математической задаче отыскания экстремума функции W; эта задача может быть весьма сложной (особенно при многих аргументах), но, в конце концов, является вычислительной задачей, которую, особенно при наличии быстродействующих ЭЦВМ, удается так или иначе решить до конца. Трудности, возникающие при этом, являются расчетными, а не принципиальными.
|
1 |
Оглавление
|