Главная > Исследование операций
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8. ЗАМКНУТЫЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

До сих пор мы рассматривали такие системы массового обслуживания, где заявки приходили откуда-то извне интенсивность потока заявок не зависела от состояния самой системы. В настоящем параграфе мы рассмотрим системы массового обслуживания другого типа — такие, в которых интенсивность потока поступающих заявок зависит от состояния самой СМО. Такие системы массового обслуживания называются замкнутыми.

В качестве примера замкнутой СМО рассмотрим следующую систему. Рабочий-наладчик обслуживает станков. Каждый станок может в любой момент выйти из строя и потребовать обслуживания со стороны наладчика. Интенсивность потока неисправностей каждого станка равна X. Вышедший из строя станок останавливается. Если в этот момент рабочий свободен, он берется за наладку станка; на это он тратит среднее время

где — интенсивность потока обслуживаний (наладок).

Если в момент выхода станка из строя рабочий занят, станок становится в очередь на обслуживание и ждет, пока рабочий не освободится.

Требуется найти вероятности состояний данной системы и ее характеристики:

— вероятность того, что рабочий не будет занят,

— вероятность наличия очереди,

— среднее число станков, ожидающих очереди на ремонт и т. д.

Перед нами — своеобразная система массового обслуживания, где источниками заявок являются станки, имеющиеся в ограниченном количестве и подающие или не подающие заявки в зависимости от своего состояния: при выходе станка из строя он перестает быть источником новых заявок. Следовательно, интенсивность общего потока заявок, с которым приходится иметь дело рабочему, зависит от того, сколько имеется неисправных станков, т. е. сколько заявок связано с процессом обслуживания (непосредственно обслуживается или стоит в очереди).

Характерным для замкнутой системы массового обслуживания является наличие ограниченного числа источников заявок.

В сущности, любая СМО имеет дело только с ограниченным числом источников заявок, но в ряде случаев число этих источников так велико, что можно пренебречь влиянием состояния самой СМО на поток заявок. Например, поток вызовов на АТС крупного города исходит, в сущности, от ограниченного числа абонентов, но это число так велико, что практически можно считать интенсивность потока заявок независимой от состояний самой АТС (сколько каналов занято в данный момент). В замкнутой же системе массового обслуживания источники заявок, наряду с каналами обслуживания, рассматриваются как элементы СМО.

Рассмотрим сформулированную выше задачу о рабочем-наладчике в рамках общей схемы марковских процессов.

Система, включающая рабочего и станков, имеет ряд состояний, которые мы будем нумеровать по числу неисправных станков (станков, связанных с обслуживанием):

— все станки исправны (рабочий свободен),

— один станок неисправен, рабочий занят его наладкой,

— два станка неисправны, один налаживается, другой ожидает очереди,

— все станков неисправны, один налаживается, стоят в очереди.

Граф состояний приведен на рис. 5.9. Интенсивности потоков событий, переводящих систему из состояния в состояние, проставлены у стрелок. Из состояния систему переводит поток неисправностей всех работающих станков; его интенсивность равна Из состояния S в систему переводит поток неисправностей уже не а станков (работают всего ) и т. д. Что касается интенсивностей потоков событий, переводящих систему по стрелкам справа налево, то они все одинаковы — работает все время один рабочий с интенсивностью обслуживания

Пользуясь, как обычно, общим решением задачи о предельных вероятностях состояний для схемы гибели и размножения (§8 гл. 4), напишем предельные вероятности состояний:

Вводя, как и раньше, обозначения перепишем эти формулы в виде

Итак, вероятности состояний СМО найдены.

В силу своеобразия замкнутой СМО, характеристики ее эффективности будут отличны от тех, которые мы применяли ранее для СМО с неограниченным количеством источников заявок.

Рис. 5.9

Роль «абсолютной пропускной способности» в данном случае будет играть среднее количество неисправностей, устраняемых рабочим в единицу времени. Вычислим эту характеристику. Рабочий занят наладкой станка с вероятностью

Если он занят, он обслуживает станков (ликвидирует неисправностей) в единицу времени; значит, абсолютная пропускная способность системы

Относительную пропускную способность для замкнутой СМО мы не вычисляем, так как каждая заявка, в конце концов, будет обслужена:

Вероятность того, что рабочий не будет занят:

Вычислим среднее число неисправных станков, иначе — среднее число станков, связанных с процессом обслуживания. Обозначим это среднее число w. Вообще говоря, величину w можно вычислить непосредственно, по формуле

но проще будет найти ее через абсолютную пропускную способность А.

Действительно, каждый работающий станок порождает поток неисправностей с интенсивностью к; в нашей СМО в среднем работает станков; порождаемый ими средний поток неисправностей будет иметь среднюю интенсивность все эти неисправности устраняются рабочим, следовательно,

откуда

или

Определим теперь среднее число станков , ожидающих наладки в очереди. Будем рассуждать следующим образом: общее число станков W, связанных с обслуживанием, складывается из числа станков R, стоящих в очереди, плюс число станков непосредственно находящихся под обслуживанием:

Число станков , находящихся под обслуживанием, равно единице, если рабочий занят, и нулю, если он свободен, т. е. среднее значение Й равно вероятности того, что рабочий занят:

Вычитая эту величину из среднего числа w станков, связанных с обслуживанием (неисправных), получим среднее число станков, ожидающих обслуживания в очереди:

Остановимся еще на одной характеристике эффективности СМО: на производительности группы станков, обслуживаемых рабочим.

Зная среднее число неисправных станков w и производительность исправного станка за единицу времени, можно оценить среднюю потерю L производительности группы станков в единицу времени за счет неисправностей;

Пример 1. Рабочий обслуживает группу из трех станков. Каждый станок останавливается в среднем 2 раза в час Процесс наладки занимает у рабочего, в среднем, 10 минут Определить характеристики замкнутой СМО: вероятность занятости рабочего; его абсолютную пропускную способность А; среднее количество неисправных станков; среднюю относительную потерю производительности группы станков за счет неисправностей

Решение. Имеем.

По формулам (8.1)

Вероятность занятости рабочего:

Абсолютная пропускная способность рабочего (среднее число неисправностей, которое он ликвидирует в час):

Среднее число неисправных станков находим по формуле (8.5):

Средняя относительная потеря производительности группы станков за счет неисправностей , т. е. за счет неисправностей группа станков теряет около 35% производительности.

Рассмотрим теперь более общий пример замкнутой СМО: бригада из рабочих обслуживает станков Перечислим состояния системы:

Рис. 5.10

Граф состояний системы показан на рис. 5.10 (интенсивности по» токов событий проставлены у стрелок). Применяя общее решение для схемы гибели и размножения, находим предельные вероятности состояний:

Обозначая, как всегда, приведем формулы к виду:

Через эти вероятности выражается среднее число занятых рабочих:

Через выражается, в свою очередь, среднее число станков, обслуживаемых бригадой в единицу времени (абсолютная пропускная способность):

а также среднее число неисправных станков:

Отсюда же находится и средняя потеря производительности группы станков в единицу времени за счет неисправностей: нужно умножить среднее число неисправных станков w на производительность I одного станка в единицу времени.

Пример 2. Два рабочих обслуживают группу из шести станков Остановки каждого (работающего) станка случаются, в среднем, через каждые полчаса. Процесс наладки занимает у рабочего в среднем 10 минут Определить характеристики замкнутой СМО:

— среднее число занятых рабочих,

— абсолютную пропускную способность,

— среднее количество неисправных станков

Решение. Имеем: . По формулам (8.7)

Отсюда среднее число занятых рабочих:

По формуле (8.9) находим абсолютную пропускную способность

По формуле (8 10) находим среднее число Неисправных станков

1
Оглавление
email@scask.ru