Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Первые теоретические оценки диффузии Арнольда были получены Чириковым $\left[68,70\right.$ ] и его сотр. ${ }^{1}$ ). Теннисон и др. [406] и Либерман [273] рассчитали скорость диффузии для модельной задачи, описанной в п. 6.1б. Теоретический анализ основан на разделении исходной системы с тремя степенями свободы на две подсистемы, каждая из которых рассматривается в первом приближении независимо. Мы будем называть такой подход моделью стохастической накачки ${ }^{2}$ ). В простейшем случае при этом учитывается взаимодействие только трех резонансов. Пусть, например, ведущий резонанс, вдоль которого идет диффузия Арнольда, связан, скажем, со степенью свободы 2. Взаимодействие между степенями свободы 1 и 2 , описываемое гамильтонианом приводит к интенсивному хаотическому движению поперек стохастического слоя ведущего резонанса. Взаимодействие же между степенями свободы 2 и 3 с гамильтонианом вызывает более слабую диффузию Арнольда. Подсистемы (6.2.1) и (6.2.2) рассматриваются последовательно. Сначала из (6.2.1) находятся величины $\theta_{2}(t)$ и $I_{2}(t)$, характеризующие движение в стохастическом слое. Затем они подставляются в (6.2.2), что дает возможность найти стохастическое изменение $I_{3}(t)$, определяющее диффузию Арнольда. Основная трудность при использовании этого метода состоит в выяснении, какие именно резонансы определяют диффузию вдоль и какие — поперек стохастического слоя. В случае трех резонансов ведущим можно считать любой из них, что просто определяет область начальных условий движения. Наиболее сильный из оставшихся задает диффузию поперек слоя, а более слабый вызывает диффузию Арнольда ${ }^{3}$ ). Покажем, как оценить скорость диффузии Арнольда на примере системы, описываемой отображением (6.1.12). Мы рассмотрим три различных режима диффузии с последовательно уменьшающейся скоростью. Первый режим соответствует диффузии по $\alpha$ вдоль толстого стохастического слоя в плоскости ( $\beta, y$ ). Диффузия происходит вследствие связи со случайным движением по $y$. Второй режим аналогичен первому, за исключением того, что диффузия по $\alpha$ идет вдоль тонкого стохастического слоя $y$-резонанса. Наконец, третий режим отвечает диффузии вдоль резонанса связи. Найдем прежде всего гамильтониан для отображения (6.1.12). Қак и в п. 3.1в, преобразуем разностные уравнения (6.1.12) в дифференциальные с помощью $\delta$-функции. В результате получаем неавтономный гамильтониан с двумя степенями свободы: где Диффузия в толстом слое. Выберем начальные значения $\beta$ и $у$ внутри толстого стохастического слоя, а $\alpha$ и $x$ вблизи центра целого резонанса. При отсутствии связи между степенями свободы ( $\mu=0$ ) движение в плоскости ( $\alpha, x$ ) происходит по инвариантной кривой (рис. 6.5). При включении связи происходит медленная диффузия по $\alpha$ и $x$. Перейдем к новым переменным $\theta=k_{x} x, \varphi=k_{y} y, \bar{\alpha}=\alpha / k_{x}$, $\bar{\beta}=\beta / k_{y}$ и представим гамильтониан $H$ в виде суммы $H=H_{x}+H_{y}$, где Здесь для удобства мы сохранили старые переменные $\alpha$ и $\beta$ в новом гамильтониане. В (6.2.6б) использовано приближение $-\ln \cos \alpha \approx \alpha^{2} / 2$ при $\alpha^{2} \ll 1, \delta_{1} \approx 1$ при $\omega_{x}^{2}=4 a h k^{2} \ll 1$, а $\varphi$ считается явной функцией $n$. Последнее допущение наиболее серьезно, поскольку при этом пренебрегается влиянием связи на движение по $y$. В результате мы получили два неавтономных гамильтониана с одной степенью свободы каждый ${ }^{1}$ ). Теперь можно решить уравнение движения независимой подсистемы (6.2.6a) и найти «стохастическую накачку» $\varphi(n)$. Подставив ее в (6.2.6б), найдем движение в плоскости ( $\alpha, \theta$ ), которое и дает диффузию Арнольда. В толстом слое, где имеется много перекрывающихся резонансов, фаза $\varphi$ хаотизуется за время порядка одной итерации отображения ${ }^{2}$ ). Поэтому с хорошей точностью можно считать, что после- довательные значения фазы ч являются случайными и независимыми, причем переход между ними имеет характер «скачка». Изменение $H_{x}$ определяется уравнением Гамильтона Используя (6.2.6б), можно записать производную в виде Первый член в выражении справа описывает малые ограниченные колебания. Считая колебания по $\theta$ малыми где $\omega_{x}=2 \pi / T=2 k_{x}\left(a_{x} h\right)^{1 / 2}$, проинтегрируем второй член в уравнении (6.2.7) по периоду отображения: При $\omega_{x} \ll 1$ подынтегральное выражение постоянно, поэтому Возводя это выражение в квадрат и усредняя как по $\chi_{0}$, так и по $\varphi$, получаем ${ }^{\mathbf{1}}$ ) В результате находим скорость диффузии в толстом слое С изменением $H_{x}$ в процессе диффузии параметры $\mu$ и $\omega_{x}$ остаются постоянными. Величина же $\theta_{0}$ растет с $H_{x}$, а вместе с ней и скорость диффузии: На рис. 6.8, $a-в$ теоретические значения $D_{1}$ (сплошные линии) сравниваются с результатами численного моделирования. Начальные условия для 100 траекторий были одинаковыми в плоскости $(\alpha, x)$ и случайными в пределах толстого слоя плоскости $(\beta, y)$. Для каждой траектории просчитывалось 500 итераций отображения. Вычислялись среднеквадратичные значения безразмерной энергии $\left\langle a^{2}\right\rangle=\left[h^{-2}\left\langle\left(\Delta H_{x}\right)^{2}\right\rangle n\right]^{1 / 2}$, которые и сравнивались $\qquad$ с теорией. На рис. 6.8 каждый треугольник представляет результат усреднения четырех независимых (по начальным условиям) вариантов счета. Согласие с теорией достаточно хорошее, хотя она и несколько завышает систематически скорость диффузии. Это разъичие объясняется, возможно, тем, что значения фазы $\varphi(m)$ не полностью независимы. Рис. 6.8. Диффузия в толстом слое (по данным работы [406]). Диффузия в тонком слое. В этом случае начальные условия на плоскости $(\alpha, x)$ мы выбираем, как и в толстом слое, вблизи центра резонанса, а в плоскости ( $\beta, y$ ) — в тонком стохастическом слое резонанса. Қак и в толстом слое, диффузия в плоскости $(\alpha, x$ ) обусловлена слабой связью со стохастическим движением в плоскости $(\beta, y)$. Однако скорость диффузии оказывается значительно меньше. Действуя прежним методом, мы оставим теперь, однако, в функции $\delta_{1}(n)$ в (6.2.6a) только члены с $q=0$ и $q=1$ из разложения (6.2.5) [ср. (4.1.26) ]. Используя, кроме того, приближение $-\ln \cos \beta \approx \beta^{2} / 2, \beta^{2} \sim a_{y} / h \ll 1$, запишем гамильтониан (6.2.6a) в виде Здесь первые два члена определяют сепаратрису резонанса в плоскости $(\beta, y)$, а третий приводит к образованию тонкого стохастического слоя в ее окрестности. Чтобы найти функцию $\varphi(n)$ для (6.2.11), будем исходить из уравнения (6.2.7), пренебрегая первым членом в его правой части: где $\theta(n)$ определяется соотношением (6.2.8). Примем, далее, что на одном полупериоде фазовых колебаний $\varphi(n)$ определяется движением по невозмущенной сепаратрисе (см. п. 1.3а) ${ }^{1}$ ): Обозначив $s=\omega_{y} n, Q_{0}=\omega_{x} / \omega_{y}$ и записав фазу $\chi_{0}$ в (6.2.8) как $\chi_{0}=Q_{0} s_{0}-\pi / 2$, получим из (6.2.12) где При $\theta_{0} \ll 1$ и мы приходим к интегралу Мельникова-Арнольда (п. 3.5а): который понимается в смысле его среднего значения по $s_{1}$ при $s_{1} \rightarrow \infty$. В рассматриваемом случае $m=2$, и мы получаем где, согласно (3.5.18), В результате находим Из свойств сепаратрисного отображения (п. 3.5б) мы знаем, что величина $Q_{0} S_{0}$ хаотизуется на полупериоде фазовых колебаний $T_{l}$. Усредняя по фазе $Q_{0} s_{0}$, получаем где На рис. 6.9 приведен график функции $F\left(Q_{0}\right)$ с максимумом при $Q_{0} \approx 1,3$ и довольно резким падением в обе стороны от максимума ${ }^{1}$ ). Так, например, при изменении $Q_{0}$ в 4 раза скорость диффузии уменьшается на два порядка по сравнению с максимальной. Для вычисления коэффициента диффузии необходимо найти средний полупериод $\left\langle T_{y}\right\rangle$ колебаний в тонком стохастическом слое. Вблизи сепаратрисы где $w=\left(H_{y}-H_{s}\right) / H_{s} \ll 1$, а $H_{s}=2 a_{y}$— энергия на сепаратрисе. Чириков [70] показал, что $\left\langle T_{y}\right\rangle$ можно найти, усреднив $T_{y}(w)$ по $w$ в пределах стохастического слоя $|w| \leqslant w_{1}$. Это дает При слабой связи $\mu \ll a_{y}$ для полуширины стохастического слоя $w_{1}$ можно использовать соотношение (4.2.23). или с учетом (6.2.19) и (6.2.21) На рис. 6.10 эта теоретическая зависимость (сплошные линии) сравнивается с результатами численных экспериментов (треугольники). При счете использовалось 100 траекторий с одинаковыми начальными условиями в плоскости ( $\alpha, x$ ) и слегка различными в плоскости $(\beta, y)$ внутри тонкого стохастического слоя. Теоретические кривые строились по формуле (6.2.23) с эмпирическим зна- Рис. 6.9. Функция (6.2.20) для диффузии в тонком слое. Аналогичным образом можно было бы вычислить скорость диффузии Арнольда и по резонансу связи, например $\omega_{x}=\omega_{y}$. Соответствующие довольно сложные расчеты были выполнены Либерманом [273]. Здесь же, следуя работе Чирикова [70], мы рассмотрим более простую модель, иллюстрирующую как диффузию по резонансу связи, так и взаимодействие многих резонансов [72]. Гамильтониан этой модели имеет вид Рис. 6.10. Диффузия в тонком слое (по данным работы [406]). где $t$ — время, а $\mu$ и $\varepsilon$ — малые параметры. Эта система состоит из двух нелинейных осцилляторов со слабой линейной связью (параметр $\mu$ ), причем на один из осцилляторов действует периодическая внешняя сила $\varepsilon f(t)$. Нас будет интересовать окрестность резонанса связи где $\omega_{x}$ и $\omega_{y}$ — невозмущенные частоты нелинейных осцилляторов. Переход к переменным действие-угол. Перейдем прежде всего к переменным действие — угол невозмущенной системы ( $\mu=\varepsilon=0$ ). Невозмущенный гамильтониан описывает два независимых осциллятора с сохраняющимися энергиями $E_{x}$ и $E_{y}$. Выражение для переменной действия получается обычным образом где $x_{M}=\left(4 E_{x}\right)^{1 / 4}$ — амплитуда $x$-колебаний. Вводя новую переменную $\xi=x /\left(4 E_{x}\right)^{1 / 4}$, получаем где $\mathscr{K}(1 / \sqrt{2}) \approx 1,85$ — полный эллиптический интеграл первого рода. Соотношение (6.2.28) устанавливает связь между переменной действия $I$ и энергией $E$ для каждого из осцилляторов $\left(E \propto I^{4 / 3}\right)$. Отсюда новый невозмущенный гамильтониан где Частоты колебаний равны Решение выражается через эллиптические функции (см., например, [70]) и имеет вид \[ Независимо от амплитуды колебаний вклад гармоник очень мал и мы можем сохранить только первый член этого разложения. Введя угловую переменную $\theta=\omega t$, запишем полный гамильтониан в виде где Вблизи резонанса связи разность $\theta_{x}-\theta_{y}$ является медленной функцией времени. Перейдем поэтому с помощью производящей функции к новым переменным: Тогда В окрестности резонанса связи $I_{x} \approx I_{y}$, так что $I_{1} \ll I_{2}$. Выражая гамильтониан (6.2.32) через новые переменные (6.2.34) и разлагая невозмущенную часть по $I_{1}$, получаем выражение для нового гамильтониана где Усреднение по быстрой фазе $\psi_{2}$ дает Отсюда видно, что $I_{2} \approx$ const, $\omega_{2}=2 \omega_{x}$, а переменные $I_{1}$, $\psi_{1}$ совершают медленные колебания на резонансе связи с частотой (для малых колебаний) Взаимодействие трех резонансов. Пусть внешняя сила имеет вид причем обе частоты близки к резонансу и удовлетворяют неравенству где Эти выражения аналогичны соответственно (6.2.11) и (6.2.6б), и для определения скорости диффузии Арнольда по величине $d K_{\|} / d t$ можно использовать тот же метод. В результате находим [70] где Для модельной задачи в п. 6.16 получается аналогичное выражение [273], хотя вывод его значительно сложнее. Скорость диффузии экспоненциально уменьшается с увеличением расстройки $(\delta \omega)$ и уменьшением связи $\left(\omega_{1}\right)$. Подчеркнем, что найденная скорость диффузии является локальной и изменяется в процессе диффузии. 6.2в. Много резонансов До сих пор при анализе диффузии Арнольда учитывались только три резонанса. Пока возмущение не слишком мало, полученные аналитические оценки хорошо согласуются с результатами численного моделирования. Однако для достаточно малого возмущения Рис. 6.11. Зависимость приведенной скорости диффузии Арнольда $D^{*}$ от $Q_{0}$ (по данным работы [72]). теория значительно занижает скорость диффузии, поскольку в этом случае существенно взаимодействие многих резонансов. Такой режим диффузии называется областью Нехорошева по имени советского математика, впервые получившего строгую верхнюю границу для скорости диффузии Арнольда [314 ]. Однако его оценка существенно завышает, вообще говоря, порядок действительной скорости диффузии. Взаимодействие многих резонансов исследовалось аналитически [70] и численно [72] для модели (6.2.24) с силой где $\sigma \approx\left(1-C^{2}\right)^{1 / 2} \ll 1$. Чтобы выделить наиболее важную экспоненциальную зависимость, вычислялась приведенная [по (6.2.44)] скорость диффузии $D^{*}$, согласно формуле ${ }^{1}$ ), Зависимость $\lg D^{*}$ от $Q_{0}$ в широком диапазоне показана на рис. 6.11 для $\omega_{x}=\omega_{y}=4,5 v$ и $\sigma=0,1$. Аналитическая зависимость (6.2.44) (пунктирная кривая) для трех резонансов $\left(\omega_{x}=4 v, \omega_{x}=5 v\right.$, $\omega_{x}=\omega_{y}$ ) хорошо согласуется с численными данными при малых $Q_{0}$, однако очень сильно занижает скорость диффузии для больших $Q_{0}$. Это расхождение можно объяснить влиянием резонансов высоких гармоник $m v=k \omega_{x}$, в частности, за счет следующих членов разложения (6.2.31). Хотя их амплитуды малы, они расположены близко к резонансам $\omega_{x}=\omega_{y}=4,5 v$, т. е. для них расстройка $\delta \omega=m v-k \omega_{x}$ тоже мала и эффективное $Q_{0} \sim 1$. где $A, B$ и $\gamma$ — подгоночные параметры, Чириков и др. [72] получили из численных данных значение $\gamma \approx 1 / 2$, т. е. $-\lg D \propto \mu^{-1 / 4}$. Верхняя оценка Нехорошева [314] приводит к существенно меньшей величине $\gamma$ (см. [70]). Для гамильтониана общего вида с $N$ степенями свободы где $\mu$ — малый параметр, а функция $H_{0}(I)$ при $|I| \rightarrow 0$ является положительно определенной квадратичной формой ${ }^{2}$ ), оценку Нехорошева можно записать в виде Так как $Q_{0} \propto 1 / \omega_{1} \propto \mu^{-1 / 2}$, то $\gamma=2 q$. Полагая в (6.2.47б) $N=3$, находим $\gamma=1 / 8$. Это приводит к слишком медленному уменьшению скорости диффузии с $\mu$ и не согласуется с численными результатами на рис. 6.11. По мнению Чирикова [70], более правильная оценка соответствует ${ }^{3}$ ) $q=1 / N$. При $N=3$ это приводит к значению $\gamma=2 / 3$, которое находится в разумном согласии с численными результатами. 6.2г. Модуляционная диффузия Обратимся теперь к модуляционной диффузии, при которой хаотическое движение происходит вдоль системы перекрывающихся резонансов, вызванных медленной модуляцией возмущения. Следуя Чирикову и др. [76], рассмотрим модельный гамильтониан Рис. 6.12. Схема резонансов при модуляционной диффузии. получаем мультиплет резонансов с центром в $\omega_{1}=I_{1}=0$ и эффективной шириной приблизительно $2 \Omega$, так как функции Бесселя $\mathscr{F}_{n}(\lambda)$ быстро убывают при $|n| \geq \lambda$. Мультиплет показан на рис. 6.12 в виде нескольких вертикальных линий на плоскости частот $\omega_{1}, \omega_{2}$. Если резонансы мультиплета перекрываются, то возникает широкий стохастический слой, по которому и идет модуляционная диффузия. Перекрытие в мультиплете. Движение внутри мультиплета описывается гамильтонианом Действуя, как и в п. 2.4а, получим $G=1$ и $F=k \mathscr{F}_{n}(\lambda)$. Полная ширина сепаратрисы для каждого из резонансов мультиплета определяется формулой (2.4.31) Расстояние же между резонансами по частоте равно $\delta \omega=\Omega$. Используя правило двух третей (п. 4.1б) ${ }^{1}$ ), запишем условие перекрытия Подставляя (6.2.51) в (6.2.52) и принимая в качестве $\mathscr{f}_{n}(\lambda)$ среднеквадратичное значение $(\pi \lambda)^{-1 / 2}$, приводим условие (6.2.52) к виду Если движение, описываемое гамильтонианом (6.2.50), связано с третьей степенью свободы, то неравенство (6.2.53) есть также условие модуляционной диффузии. Если же возмущение меньше этой границы, то остается только диффузия Арнольда. Отметим неожиданное следствие оценки (6.2.53): чем меньше частота модуляции, тем ниже граница перекрытия по возмущению ( $k \propto \Omega^{2}$ ). На первый взгляд это противоречит нашей интуиции об адиабатических возмущениях, согласно которой с ростом отношения частот влияние резонансов уменьшается ${ }^{2}$ ). Это противоречие разрешается, если принять во внимание, что стохастичность связана с прохождением резонанса, а это происходит только дважды за период модуляции $2 \pi / \Omega$. Поэтому при $\Omega \rightarrow 0$ скорость диффузии также стремится к нулю. Отметим, что поскольку ширина мультиплета уменьшается с уменьшением $\Omega$ при заданном $\lambda$, то при ширина $\lambda \Omega<\Delta \omega_{\text {макс }}$. В этом случае весь мультиплет сливается в единый резонанс ${ }^{3}$ ), а скорость диффузии по стохастическому слою этого резонанса падает. Три режима ${ }^{1}$ ) движения в модуляционном слое, определяемые неравенствами (6.2.53) и (6.2.54), схематически показаны на рис. 6.13. Эти три режима были описаны Теннисоном [404] для модели взаимодействия встречных протонных пучков в проекте накопительного кольца Брукхейвенской лаборатории (США). В этой модели Теннисона использовалась модуляция частоты: Рис. 6.13. Три режима движения внутри мультиплета в зависимости от частоты модуляции $\Omega$ (по данным работы [276]). тогда как в рассмотренной выше модели (6.2.48) модулируется фаза: Обе модели сводятся друг к другу путем замены переменных с производящей функцией причем $\lambda=\bar{\lambda} / \Omega$. На рис. 6.14 показан эффект модуляции для стандартного отображения (при $K=0,007$ ), что соответствует уравнениям (6.2.55), если заменить $k$ на $K \delta_{1}(t)$, где $\delta_{1}(t)$ — периодическая $\delta$-функция (3.1.33). При $\bar{\lambda}=0$ (рис. $6.14, a$ ) имеется единственный резонанс с шириной $2 \Delta I_{\text {макс }}=4 K^{1 / 2}$. При $\bar{\lambda}=0,63$ и последовательно уменьшающейся частоте $\Omega$ на рис. 6.14 , б виден мультиплет неперекрывающихся резонансов; на рис. 6.14 , в-частичное перекрытие резонансов; на рис. 6.14 , г — полное перекрытие резонансов. Отсюда [ср. (6.2.7)]: Первый член приводит лишь к малым осцилляциям $H_{\|}$, которыми мы пренебрегаем. В результате получаем где фаза $\varphi(t)=\theta_{1}-\theta_{2}$. Получить $\theta_{1}(t)$ из (6.2.50) можно лишь приближенным методом. Считая $k$ малым параметром возмущения, запишем (6.2.50) в виде и Используя каноническую теорию возмущений (п. 2.2б) и замечая, что $\left\langle H_{1}\right\rangle=0$, из (2.2.44) получаем в первом порядке по $k: \bar{H}=H_{0}$, $\bar{I}_{1}=I_{0}=\mathrm{const}, \bar{\theta}_{1}=I_{0} t$, а для производящей функции — выражение [см. (2.2.45)]: Рис. 6.14. Фазовая плоскость стандартного отображения при модуляция $K=0,007, a$ — модуляция отсутствует; $\sigma-2$ — частота модуляции последовательнс астоты. Подставляя в (6.2.60б) $\theta_{1}=\bar{\theta}_{1}=I_{0} t$ и используя (6.2.61), находим В качестве грубого приближения оставим в этой сумме один (наибольший) член с $n \approx \lambda$. Тогда где в подгоночном параметре $R$ учитывается «эффективное» число членов в сумме (6.2.62). Выражение (6.2.63) является основным приближением при анализе движения в модуляционном слое. где усреднение ${ }^{1}$ ) по $I_{0}$ производится по всей стохастической области $\left|I_{0}\right|<\lambda \Omega$. Подставляя сюда (6.2.58), получаем Используя (6.2.63) и снова разлагая по функциям Бесселя, находим где Интегрирование в (6.2.65) по $t^{\prime \prime}$ дает Интегрируя далее, сначала по $I_{0}$, а затем по $t^{\prime}$, получаем Здесь сумма по $j$ ограничена $\delta$-функцией в (6.2.67): При изменении $I_{0}$ от — $\lambda \Omega$ до $\lambda \Omega$ целое $j$ изменяется от до бесконечности. Аргумент функции Бесселя в (6.2.66б) обычно мал $\left.{ }^{1}\right)$, так что доминирующим является член с $j=l$. Опуская остальные члены и усредняя по $\chi_{0}$, получаем окончательный результат С ростом $\omega_{2}$ величина $l$ изменяется скачками, как это следует из (6.2.68). Соответственно график зависимости $D\left(\omega_{2}\right)$ имеет вид серии убывающих «плато» (рис. 6.15). Основное плато ( $l=0$ ) соответствует частотам $0<\omega_{2}<\lambda \Omega$, а остальные расположены в интервалах На основном плато $\mathscr{F}_{0} \approx 1$ и коэффициент диффузии Относительно большая скорость диффузии объясняется тем, что внутри модуляционного слоя (см. рис. 6.12) выполняется условие точного резонанса $\omega_{1}=I_{0}=\omega_{2}$. На рис. 6.15 представлены численные значения приведенного коэффициента диффузии как функции $\omega_{2} / \Delta \omega$. Здесь вместо $\lambda \Omega$ использована фактическая полуширина модуляционного слоя $\Delta \omega \approx 1,3 \lambda \Omega, \lambda=10, \quad \Omega=$ $=10^{-2}, k=5 \times 10^{-4}$. Ясно видно основное плато со средним значением $D_{n}=1,6$, что хорошо согласуется с величиной $\pi / 2$ из (6.2.71). При $\omega_{2}>\Delta \omega$ скорость диффузии резко падает, а затем, с ростом $\omega_{2}$, уменьшается ступенчатым образом. Это как раз то, что предсказывает теория (6.2.69). Для количественного сравнения с численными результатами необходимо определить параметр $R$. Это было сделано путем под- гонки формулы (6.2.69) к численным данным на краю двух последних плато ( $l=2, l=3$ ). Подставив найденное значение $R \approx 5,3$ в $(6.2 .69)$, получим зависимость $D_{n}\left(\omega_{2} / \Delta \omega\right)$, представленную на рис. 6.15 сплошной линией. Если учесть, что в теории использовалось существенное упрощение (6.2.63), согласие можно считать Рис. 6.15. Зависимость приведенного коэффициента диффузии $D_{n}$ от величины $\omega_{2} / \Delta \omega$. вполне удовлетворительным. Отметим, что теория предсказывает резкий спад $D_{n}\left(\omega_{2}\right)$ после каждого плато и что все плато, кроме основного $(l=0)$, имеют некоторый наклон. В пределах каждого плато скорость диффузии спадает по закону где последнее выражение относится к $l \gg 1$. Все эти предсказания находятся в разумном согласии с численными данными ${ }^{1}$ ).
|
1 |
Оглавление
|