Главная > СВЧ цепи. Анализ и автоматизированное проектирование
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.2.2. ОДНОРОДНЫЙ ДИЭЛЕКТРИК. НЕРАВНОМЕРНЫЕ СЕТКИ

Описанный выше метод, опирающийся на разложении в ряд Тейлора, является весьма гибким и позволяет получать конечно-разностную аппроксимацию, когда сетка неравномерна (асимметрична). Такие сетки, как известно, особенно полезны, когда возникает необходимость более тщательного исследования полей в отдельных подобластях. С точки зрения вычислений во внутренних краевых задачах целесообразнее уменьшать размер ячейки именно в тех подобластях, информация о

Рис. 3.4. Неравномерная сетка (а) и элементарный участок сетки (б)

которых должна быть более детальной, чем работать с более грубой, но равномерной сеткой. Поэтому необходимо уметь переходить от редкой сетки к более густой. Такая переходная область состоит, естественно, из ячеек различных размеров, что отражено на рис. 3.4, а.

Запишем с помощью ряда Тейлора потенциалы используя разложение по координате х для неравномерной сетки из пяти узлов (рис. 3.4, б):

Аналогично для

Из этих выражений следует, что

Простейшая аппроксимация, основанная на пренебрежении слагаемыми более высокого порядка, недопустима, так как приводит к весьма значительной погрешности. Поэтому получим более точную конечно-разностную аппроксимацию, чем использовалась ранее. Умножим обе части равенств (3.11) и (3.12) на некоторые постоянные соответственно и сложим полученные выражения:

Второе слагаемое в (3.13) равно нулю, если

Подставляя это значение А в (3.13), находим

В этом равенстве уже можно пренебрегать слагаемыми более высокого порядка, так как первое из отбрасываемых слагаемых имеет порядок

Аналогично, если положить в (3.13)

то можно определить

где первое из слагаемых более высокого порядка пропорционально т. е. ими также можно пренебречь. Представляет интерес положить в что соответствует переходу от неравномерной сетки к равномерной. В этом случае согласно (3.15)

что совпадает с ранее полученным выражением для равномерной сетки из пяти узлов.

Выписав выражение, аналогичное (3.14), для второй производной, но уже по координате у, можно получить искомую конечно-разностную аппроксимацию уравнения Лапласа на неравномерной сетке. Отметим, что погрешность аппроксимации на равномерной сетке имела порядок т. е. аппроксимация (3.14) менее точна. Поэтому в областях с быстрым изменением полей предпочтение следует отдать густым равномерным сеткам; там, где изменение полей более медленное,- тоже равномерным, но редким. Тогда неравномерная сетка появляется лишь в переходных областях.

1
Оглавление
email@scask.ru