Главная > Общий курс физики. T. V. Атомная и ядерная физика (Сивухин Д. В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1. Многие ядерные реакции при невысоких энергиях проходят через стадию образования так называемого составного, или промежуточного, ядра. Представление о составном ядре было введено в физику в 1936 г. Нильсом Бором. Он руководствовался следующими соображениями. Частица, проникшая внутрь ядра, как правило, сильно взаимодействует с его нуклонами — настолько сильно, что ее энергия взаимодействия с отдельным нуклоном обычно того же порядка, что и кинетическая энергия самой частицы. Поэтому весьма вероятен захват частицы ядром. Частица застревает в ядре, причем из-за взаимодействия с нуклонами ядра ее энергия уменьшается настолько, что она длительное время не может покинуть ядро. Более того, частица, попавшая в ядро, вообще теряет свою индивидуальность и действует как система новых нуклонов, присоединившихся к прежним нуклонам ядра. Из-за множества столкновений между нуклонами в поведении новых и прежних нуклонов принципиально пропадает всякое различие. С другой стороны, если первоначальная энергия влетевшей частицы не слишком велика, в системе не окажется нуклонов столь большой энергии, чтобы один или несколько из них немедленно покинули ядро. Задерживаясь в ядре на некоторое время, нуклоны образуют систему частиц, которую в течение этого времени можно рассматривать как связанную. Эта система и есть составное, или промежуточное, ядро.

Составное ядро возникает в возбужденном состоянии и стремится потерять энергию возбуждения за счет какого-либо возможного для него процесса. В принципе оно не отличается от радиоактивного ядра. Один из возможных механизмов радиоактивного превращения состоит в том, что энергия захваченной частицы, беспорядочно распределившаяся между нуклонами составного ядра, в результате флуктуационных процессов вновь сконцентрируется на одной из частиц. Тогда такая частица и вылетит из ядра. Не обязательно, чтобы это была та же частица, которая влетела в ядро. Она может быть и другой: протон, нейтрон, $\alpha$-частица и пр. Возможны несколько каналов радиоактивного распада составного ядра.
2. Необходимо особо подчеркнуть, что говорить о возбужденном составном ядре имеет смысл только тогда, когда оно существует достаточно долго. «Достаточно долго», конечно, надо понимать не в макроскопическом, а в ядерном масштабе. Например, чтобы нейтрон со скоростью $10^{9}$ см/с пролетел через ядро, не испытав столкновений, для него требуется время порядка $10^{-13}: 10^{9} \approx 10^{-22}$ с. Это и есть «ядерное время», которым надо пользоваться для суждения о длительности процессов, происходящих в атомном ядре. Если составное ядро живет в возбужденном состоянии $10^{-14}$ с, то в ядерном масштабе это время должно считаться «очень большим». Из-за короткодействующего характера ядерных сил за это время влетевший нейтрон успеет претерпеть в ядре более $10^{-14}: 10^{-22} \approx 10^{8}$ столкновений, чего с избытком достаточно, чтобы его движение в ядре приобрело запутанный характер, совершенно не зависящий от того, с какой скоростью и в каком направлении нейтрон влетел в исходное ядро. Таким образом, возникает система нуклонов, поведение которой совершенно не зависит от истории ее образования. В ядерном масштабе времени такая система ведет себя так, как если бы она существовала бесконечно долго. А это и есть необходимое условие того, чтобы такую систему можно было рассматривать как составное ядро.

Наряду с описанным процессом образования и распада составного ядра возможен и конкурирующий процесс. Это процесс радиационного захвата. В этом процессе ядро переходит в возбужденное состояние также в результате захвата какой-то частицы. Но в основное состояние оно возвращается путем испускания $\gamma$-кванта. Последний процесс происходит под действием уже электромагнитных сил, т.е. в ядерном масштабе по-прежнему достаточно «медленно». Поэтому и при радиационном захвате может также образоваться составное ядро.

Заслуживает внимания тот парадоксальный с точки зрения классической физики факт, что силы кулоновского отталкивания между протонами и другими положительно заряженными частицами ядра (например, между $\alpha$-частицами) не способствуют, а препятствуют выходу этих частиц из ядра. Об этом факте уже говорилось ( $\S 73$, п. 12 ) в связи с влиянием центробежного барьера на $\alpha$-распад. Объяснение его состоит в том, что силам отталкивания соответствует положительная энергия. Она увеличивает высоту, а с ней и ширину кулоновского потенциального барьера. Выход же протона и всякой положительно заряженной частицы из ядра есть подбарьерный процесс. Он тем менее вероятен, чем выше и шире потенциальный барьер. Особенно существенно это обстоятельство проявляется в случае средних и тяжелых ядер.
3. Таким образом, процесс столкновения частицы а с ядром А разбивается на два этапа. На первом этапе частица а сближается с ядром А. Завершением этапа является образование составного ядра C* в возбужденном состоянии. Схематически этот процесс можно изобразить так:
\[
\mathrm{a}+\mathrm{A} \rightarrow \mathrm{C}^{*} .
\]

На втором этапе происходит распад составного ядра по схеме
\[
\mathrm{C}^{*} \rightarrow \mathrm{b}+\mathrm{B} .
\]

Ядерная реакция в целом изображается схемой
\[
\mathrm{a}+\mathrm{A} \rightarrow \mathrm{C}^{*} \rightarrow \mathrm{b}+\mathrm{B} .
\]

Эффективное сечение $\sigma_{\mathrm{ab}}$ реакции (89.3) найдется, если эффективное сечение $\sigma_{\mathrm{C}^{*}}$ образования составного ядра умножить на вероятность $W_{\mathrm{b}}$ распада этого ядра по каналу $b$ :
\[
\sigma_{\mathrm{ab}}=\sigma_{\mathrm{C}^{*}} W_{\mathrm{b}} .
\]

Если то же составное ядро распадается по другому каналу $b^{\prime}$ с вероятностью $W_{\mathrm{b}^{\prime}}$, то $\sigma_{\mathrm{ab}^{\prime}}=\sigma_{\mathrm{C}^{*}} W_{\mathrm{b}^{\prime}}$. Исключение $\sigma_{\mathrm{C}^{*}}$ дает
\[
\frac{\sigma_{\mathrm{ab}}}{\sigma_{\mathrm{ab}^{\prime}}}=\frac{W_{\mathrm{b}}}{W_{\mathrm{b}}} .
\]

Пусть теперь такое же составное ядро $\mathrm{C}^{*}$ с той же энергией возбуждения образуется в результате столкновения других частиц $\mathrm{m}$ и $\mathrm{M}$ : $\mathrm{m}+\mathrm{M} \rightarrow \mathrm{C}^{*}$. Ввиду тождественности этого ядра с прежним оно будет распадаться по тем же каналам с образованием тех же частиц $\mathrm{b}^{2}$ и $\mathrm{b}^{\prime}$ и с прежними вероятностями $W_{\mathrm{b}}$ и $W_{\mathrm{b}^{\prime}}$, а потому $\sigma_{\mathrm{mb}} / \sigma_{\mathrm{mb}^{\prime}}=W_{\mathrm{b}} / W_{\mathrm{b}^{\prime}}$. Таким образом,
\[
\frac{\sigma_{\mathrm{ab}}}{\sigma_{\mathrm{ab}}}=\frac{\sigma_{\mathrm{mb}}}{\sigma_{\mathrm{mb}^{\prime}}} .
\]

Выполнение такого соотношения является подтверждением того, что обе реакции, рассмотренные выше, идут с образованием составного ядра. Если же соотношение (89.6) не выполняется, то схема с образованием составного ядра либо не выполняется, либо составное ядро еще не совсем успело сформироваться.
4. Другой характерной особенностью ядерных реакций, идущих через составное ядро, при выполнении определенных условий является симметрия в системе центра масс углового распределения разлетающихся частиц, которые образуются при распаде составного ядра. Предположим, что результирующий спин составного ядра равен нулю. Тогда частицы, образующиеся при распаде составного ядра, в системе центра масс будут с одинаковой вероятностью разлетаться вперед и назад. (Направление «вперед» задается скоростью налетающей частицы.) Про такое угловое распределение говорят, что оно обладает симметрией «вперед-назад». Для обоснования высказанного утверждения заметим, что первоначальная система из-за наличия импульсов и угловых моментов у налетающей частицы и исходного ядра симметрией «впередназад» не обладает. Но такая симметрия появится в процессе формирования составного ядра. В самом деле, в системе центра масс результирующий импульс исходной системы равен нулю. При формировании составного ядра не только сохранится равенство нулю полного импуль$\mathrm{ca}$, но и произойдет хаотическое распределение импульсов отдельных нуклонов по направлениям в пространстве. То же самое относится и к их спинам, так как по предположению спин составного ядра равен нулю. Остается только орбитальный момент импульса частиц. Но в системе центра масс он перпендикулярен к импульсу налетающей частицы. При формировании составного ядра он, конечно, сохранится, но хаотически перераспределится между нуклонами составного ядра. Получится составное ядро, обладающее симметрией «вперед-назад». Естественно, что такая симметрия сохранится и при распаде составного ядра.

1
Оглавление
email@scask.ru