Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Случаи, когда можно найти точное решение уравнений движения реальной физической системы, являются скорее исключением, чем правилом. Причин для этого немало. В предыдущих главах мы обычно занимались задачами, которые можно было свести к относительно простым уравнениям, записанным для одной частицы. Многие из этих задач, касающиеся одной частнцы, имеют дело с центральными силами, которые, как мы видели, допускают решение в квадратурах [см.(1.219)]. Задачи, которые мы чсследовали, по большей части выбирались так, что квадратура вела к решению в замкнутой форме. Но такие простые решения для одиночной частицы для большинства систем будут лишь первыми приближениями настоящих уравнений движения и являются результатом пренебрежения «возмущающими» влияниями. Такие возмущения могут быть нескольких различных типов. Прежде всего, возможен случай, когда невозмущенную систему помещают в некоторое внешнее поле, такое, например, как внешнее электрическое или магнитное поле. Тогда можно наблюдать явления Штарка или Зеемана, — явления, к которым мы обратимся в последнем параграфе этой главы. Во-вторых, встречаются случаи, когда, интересуясь невозмущенной системой, мы просто пренебрегаем влиянием составных частей этой системы. В качестве примера можно привести движение Луны вокруг Земли. В первом приближении можно считать как Луну, так и Землю точечными частицами, движущимися по орбитам, определяемым исключительно силами тяготения, действующими между двумя точечными массами. Но это решение безусловно должно быть скорректировано как на влияние Солнца на орбиту Луны, так и на тот факт, что Земля отнюдь не является абсолютно твердым телом, а напротив, в высшей степени подвержена деформациям, поскольку она покрыта океаном, испытывающим приливы и отливы. Мы не станем вдаваться здесь в эту тему — она более подходит для курса небесной механики. В-третьих, встречается немало случаев, когда мы сталкиваемся с системами, уравнения движения которых чрезвычайно сложны и не позволяют получить точное решение в замкнутой форме; нередко, однако, возможно указать другую систему, гамильтониан которой почти такой же, как и гамильтониан интересующей нас системы, но решение уравнений движения которой может быть получено в замкнутой форме через квадратуры. Различие между исходным и упрощенным гамильтонианами может в этом случае рассматриваться как «возмущение». Именно к этому типу возмущений и относится задача об ангармоническом осцилляторе. Эта задача возникает в теории малых колебаний, о которых шла речь в гл. 3. В гл. 3 мы удержали только первый член, отличный от нуля, в выражении для потенциальной энергии, что и привело нас к таким уравнениям движения, которые удалось свести к совокупности уравнений независимых гармонических осцилляторов. Вот эту-то систему мы и считаем невозмущенной. Возмущение состоит в том, что в гамильтониане учитываются все остальные члены. Самым важным из них является, конечно, кубический член. Мы не станем заниматься общей задачей, касающейся систем со многими степенями свободы, которые в первом приближении сводятся к задаче о малых колебаниях (см. гл. 3); мы рассмотрим поподробнее одномерный ангармонический осциллятор, гамильтониан которого задается уравнением Причина, по которой имеет определєнный смысл заняться упрощенной невозмущенной задачей, заключается в том, что «невозмущенная» задача довольно близка к интересующей нас задаче, так что ее решение имеет по меньшей мере некоторое отношение к решению действительно нужной задачи. Более того, обычно удается найти решение «возмущенной» задачи в виде ряда по степеням некоторого параметра, входящего в виде множителя при возмущении, — так, например, как входит множитель В следуюцем нараграфе будет снстематически развита теория для задач такого типа, основанная на использовании переменнъх действие — угол, введенных в предыдущей главе. Могут спросить, в какой степени необходимоесли не касаться непосредственной связи вопроса с квантовомехапической теорией возмущений — бросать в бой тяжелую артилиерию канонических преобразований; в самом деле, многие авторы полагают, что любой прямой метод вполне успешно решает ту же самую задачу. На э’то можно возразить, обратив внимание на то, что каноническая теория возмущений была в ходу задолго до появления квантовой механики; но самым убедительным аргументом является, пожалуй, то, что во многих случаях, как можно убедиться, прямые методы оказываются либо более неудобными, либо они ведут просто к ошибочным результатам; нередко случается, что они одновремено и неудобны, и ошибочны. Чтобы не быть голословными, мы разберем в этом параграфе применение двух прямых методов. Эти методы будут применены к решенню задачи об ангармоническом осцилляторе, гамильтониан которого задан выражением (7.101). Полученные результаты мы сравним с теми результатами, которые следуют из канонической теории возмущений; они будут получены в следующем параграфе. Задача, которой мы будем заниматься в этой главе, это задача о движении системы, гамильтониан которой задан в виде: где через Первый метод решения этих уравнений состоит в том, что записывают Через где индексом «0» отмечено, что вместо Таким способом монно найти столько членов ряда (7.104), сколько желательно. Второй мегод может бить использован только мля могократно периодических систем, где можно воспользоваться методом разделения переменных (см. § 6.2). В этом с.тучае можно воспользоваться функцией ГамильтонаGirón внда где каждая из где интегрирование ведется по полному периоду переменной Если необходимо найти изменения и уравнения, определяющие преобразование от величин Конечно, если все уравнения могут быть решены точно в замкнутой форме, то нет никакой необходимости использовать теорию возмущений; но, как правнло, мы имеем дело с системами, где этого как раз нет и где просто необходимо для нахождения решения использовать разложение в ряд по степеням Применим теперь изложенные методы к системе, гамильтониан которой задается выражением (7.101). Мы имеем в этом случае: Используя первый метод, мы получим уравнение нулевого порядка: решением которого будет Уравнение первого порядка имеет вид: а его решение запишется так: Уравнение второго порядка имеет своим решением где через и мы получаем выражение для энергии: где В данном конкретном случае использованный метод не слишком подходящ по двум причинам: прежде всего мы обнаруживаем, что решения дифференциальных уравнений для Следует добавить, что перечисленные трудности присущи только задаче, связанной с гармоническим осциліятором, поскольку в этом случае — и только в этом случае невозмущенное уравнение движения представляет собой однородное линейное дифференциальное уравнение. Вместе с тем, поскольку уравнение движения гармонического осциллятора едва ли не самое важное в теоретической физике, отмеченные трудности достаточно серьезны. Воспользуемся теперь вторым методом для решения задачи об ангармоническом осцилляторе. Мы увидим, что этот метод не сталкивается с отмеченными выше трудностями, но при этом определить с его помощью возмущенное движение довольно затруднительно. Фактически самый простой способ получения первых отличных от нуля поправок как к энергии Мы будем следовать Борну*) и воспользуемся переменными действие- угол. Если через или же причем Обозначим через Будем искать точное решение уравнений движения в виде ряда по степеням Из (6.210) и (7.121) можно ввести переменную действия где Если ввести вместо переменных то угол откуда следуют следующие выражения для Теперь мы можем написать: для получения величин Воспользовавшись (7.123) и (7.127) — (7.129), найдем: или Чтобы выразить где учтены (7.121) и (7.122) и то обстоятельство, что в Разлагая Объединяя выражения (7.127), (7.130), (7.131), (7.133) и (7.135), мы получаем в конце концов выражение и для
|
1 |
Оглавление
|