Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
11. ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ЧИСЛА АВОГАДРОЗамечательные работы Перрена, сыгравшие исключительную роль в деле утверждения молекулярных представлений, связаны с использованием полученной выше барометрической формулы. Основная идея опытов Перрена сводилась к предположению, что законы молекулярно-кинетической теории определяют поведение не только атомов и молекул, но и гораздо более крупных частиц, состоящих из многих тысяч молекул. Исходя из весьма общих соображений, которые здесь не будут рассматриваться, можно предполагать, что средние кинетические энергии очень мелких частиц, совершающих броуновское движение в жидкости, совпадают со средними кинетическими энергиями молекул газа, если только температура жидкости и температура газа одинаковы. Точно так же распределение по высоте частиц, взвешенных в жидкости, подчиняется тому же закону, что и распределение по высоте молекул газа. Подобный вывод очень важен, поскольку на основании его возможна количественная проверка закона распределения. Проверку можно осуществить путем непосредственного подсчета с помощью микроскопа количества взвешенных частиц, находящихся в жидкости на разной высоте. Уравнение (36) распределения частиц по высоте
удобно в этом случае переписать, разделив числитель и знаменатель дроби, стоящей в правой части уравнения, на число Авогадро При этом следует заметить, что отношение - соответствует массе частицы а отношение равно средней кинетическои энергии частицы [сравните уравнение (28)]. Вводя эти обозначения, получим:
Если теперь опытным путем определить количества частиц и соответствующие двум различным значениям то можно будет написать:
Вычитая из первого уравнения второе, найдем:
Из этого соотношения можно определить если только знать массу частицы При всей простоте и ясности основной идеи опыты Перрена были связаны с преодолением больших трудностей. В качестве объекта исследования им были выбраны водные эмульсии мастики и гуммигута, которые подвергались центрифугированию для получения эмульсий, состоящих из зернышек одинакового размера. Размер зернышек, которые считались шариками, определялся по скорости их оседания. За движением отдельного зернышка следить было невозможно и потому наблюдалась скорость оседания верхней границы эмульсии, т. е. средняя скорость оседания многих тысяч зернышек. Зная плотность эмульгированного вещества и определяя размеры зернышек эмульсии, можно было вычислить их массы. Далее необходимо было определить числа С этой целью к предметному стеклышку для микроскопических наблюдений Перрен приклеил второе стекло с просверленным в нем круглым отверстием, так что образовалась цилиндрическая прозрачная кювета. Поместив в кювету каплю эмульсии и закрыв для предотвращения испарения кювету покровным стеклышком, можно было с помощью микроскопа наблюдать зернышки эмульсии. Если воспользоваться объективом с небольшой глубиной поля зрения, то в микроскопе будут видны только зернышки, расположенные в очень тонком слое жидкости. Практически в этих опытах можно сосчитать лишь небольшое количество зернышек, поскольку их число непрерывно меняется. Для преодоления этого затруднения в фокальной плоскости окуляра помещался непрозрачный экран с маленьким круглым отверстием. Благодаря этому поле зрения микроскопа сильно уменьшалось, и наблюдатель мог сразу определить, сколько зернышек в данный момент находится в поле зрения (рис. 12). Повторяя подобные наблюдения через правильные промежутки времени, записывая наблюдаемые числа зерен и усредняя полученные данные, Перрен показал, что среднее число зерен на данном уровне стремится к некоторому определенному пределу, соответствующему плотности эмульсии на этом уровне. Для того чтобы проиллюстрировать трудоемкость этих опытов, можно указать, что для получения точного результата необходимо было производить несколько тысяч измерений.
Рис. 12. Распределение зерен эмульсии. Определив с желаемой степенью точности плотность эмульсии на некотором уровне Перрен перемещал микроскоп в вертикальном направлении и измерял плотность эмульсии на втором уровне Тщательно выполненные измерения показали, что распределение зернышек эмульсии по высоте подчиняется барометрической формуле (уравнение 37). Воспользовавшись найденными значениями плотности зерен эмульсии на разных уровнях, Перрен вычислил среднюю кинетическую энергию частицы воспользовавшись соотношением
определил экспериментально число Авогадро Найденные таким образом значения числа Авогадро колебались от до Число Авогадро можно определить различными способами. В своей работе Перрен сопоставляет найденные им величины со значениями числа Авогадро, определенными двенадцатью другими методами, и подчеркивает, что самые разнообразные методы определения приводят к весьма близким величинам, чего не могло бы быть, если бы основные положения молекулярно-кинетической теории не отражали бы правильно явления, объективно существующие в природе.
|
1 |
Оглавление
|