Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Распространение упругого импульса вдоль цилиндрического стержняСогласно элементарной теории распространения упругих возмущений вдоль цилиндрического стержня, при распространении изгибных импульсов имеет место дисперсия, тогда как продольные и крутильные импульсы должны распространяться вдоль стержня без изменения формы. Теория Похгаммера, описанная в предыдущем параграфе, показывает, что скорость распространения продольных синусоидальных волн зависит от длины волны, и только в случае распространения волн кручения основных форм явление дисперсии не имеет места. Эта теория показывает также, что для всех трех типов волн элементарная теория применима лишь в случаях, когда длина волны велика по сравнению с радиусом стержня. Результаты точной теории нельзя безоговорочно применять к распространению единичного импульса, так как такой импульс можно анализировать по синусоидальным составляющим только с помощью интеграла Фурье, который, вообще говоря, дает трудно обозримые результаты. Однако тип искажения, производимый распространяющимся вдоль стержня импульсом, можно оценить на основании дисперсионных кривых фиг. 14—17. Девис [25] исследовал случай продольного импульса в рамках точной теории двумя путями. Первый из использованных им методов состоит в изучении распространения периодически повторяющегося импульса. Такой повторяющийся импульс можно анализировать с помощью рядов Фурье, причем скорость распространения, соответствующая каждому члену ряда, может быть найдена из кривых фазовых скоростей. Во второй постановке использован метод стационарной фазы Кельвина. В этом методе рассматривается распространение бесконечно короткого импульса бесконечно большой амплитуды. Такой импульс можно выразить через интеграл Фурье и рассматривать как результат суперпозиции синусоидальных волн напряжения, охватывающих спектр длин волн. Все пакеты волн берутся одинаковой амплитуды и считаются находящимися в фазе в начале координат и погашающими друг друга в любом другом месте в момент Пользуясь этим, Девис показал, что продольный импульс, начальная длина которого сравнима с радиусом, по мере распространения вдоль стержня искажается и основной импульс сопровождается "хвостом" колебания высокой частоты; далее, любые резкие изменения градиента размываются, а прямолинейная часть импульса превращается в колеблющуюся кривую. Он подтвердил свои выводы экспериментально и показал, что они могут быть получены из приближенного уравнения продольных волн при учете эффекта поперечной инерции (см. Ляв, стр. 446).
|
1 |
Оглавление
|