Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
6.3. СПЕКТРАЛЬНЫЙ ИНТЕРФЕРОМЕТР МАЙКЕЛЬСОНА6.3.1. ВведениеВ отличие от звездного интерферометра спектральный интерферометр основан на явлении интерференции при делении амплитуд (разд. 1.4). Основы его конструкции разработаны Майкельсоном в 1881 г. в связи с экспериментом по проверке возможности движения Земли относительно эфира. С этой целью он совместно с И. В. Морли (исторический опыт Майкельсона-Морли) намеревался создать прибор большого размера. Но основные схемные решения были использованы для измерения спектральных длин волн (позднее для эталонирования метра в единицах длины волны красной линии кадмия) и изучения тонкой структуры спектра. Именно эти спектроскопические приложения сохраняют свое значение и даже становятся все более важными в наши дни.
Рис. 6.5. Спектральный интерферометр Майкельсона. а - общий вид схемы (отражение на стеклянных пластинках О и С не показано); б - разность путей между отраженными лучами На рис. 6.5, а схематично показано устройство одного из первых вариантов интерферометра. Свет от источника S (обычно протяженного) делится по амплитуде задней поверхностью стеклянной пластинки О с полупрозрачным серебряным покрытием на два пучка, один из которых отражается, а другой пропускается. Отраженный пучок достигает зеркала и после этого возвращается, частично проходя через О в телескоп Т. В то же время другой пучок, который вначале прошел через делитель пучка, поступает на зеркало Зеркала и Окружности соответствуют направлениям с углами
где m - целое или нуль, Одно из зеркал ( Выражение для радиального распределения интенсивности в направлении от центра дифракционной картины при заданных значениях h и длины волны к легко получить путем известного нам метода векторных диаграмм. Если, например, амплитуды излучения, поступающего в телескоп двумя пуглмл, сделаны равными, скажем, А, то результирующая интенсивность в направлении 0 системы колец определяется выражением
с разностью фаз
В результате получаем
Поэтому для идеального монохроматического излучения интерференционные полосы имеют вид
Рис. 6.6. а - интерференционные полосы типа картина наблюдалась на самом деле, то можно было бы заключить, что излучение полностью монохроматично. Если же, наоборот, функция видности от другого источника излучения падает до нуля всякий раз, когда вносится разность хода, то можно считать, что излучение источника имеет широкий спектр, поскольку волновые цуги должны быть коротки (разд. 4.6). Именно такой количественный подход к анализу оптических спектров и является основой для использования интерферометрического метода. Рассмотрим другой гипотетический пример. Предположим, что исследуемое излучение представляет собой комбинацию двух полностью монохроматических излучений с близкими длинами волн
где Увеличение (или уменьшение) h вновь вызывает разделение двух групп колец, хотя и незначительное, и детектор регистрирует последовательное прохождение максимума меньшей интенсивности и ненулевого минимума. Характер изменения сигнала будет определяться разностью двух длин волн, их относительной интенсивностью излучения, а также в конкретных примерах формой линии и ее тонкой структурой. Поскольку две системы колец движутся от (или в направлении) центра картины в различном темпе [см. уравнение (6.14)], то достигается значение
где к - некоторое число. Из приведенных выше уравнений вычитанием находим, что
Этот результат можно использовать для различных целей. Предположим, например, что известно и наблюдения выполняются на оси или вблизи нее, т.е.
Следовательно, измерение Н позволяет вычислить Высокая точность этого метода при определении Этот способ использования интерферометра аналогичен более ранним наблюдениям Физо [19], обнаружившего в опыте с кольцами Ньютона, что кольца 500-го порядка от натриевого источника почти полностью исчезают (т.е. видность равна нулю), но снова обретают свою четкость на 1000-м порядке. Он заключил, что излучение натрия представлено дублетом, для которого кольцо 1000-го порядка на большей длине волны совпадает с кольцом 1001-го порядка на меньшей длине волны, и поэтому разность длин волн двух линий составляет около 1/1000 от их среднего значения. Однако Майкельсон понимал, что при таком методе анализа теряется много информации. Он сделал визуальные оценки (выраженные в количественном масштабе с помощью отдельного изощренного калибровочного эксперимента) видности интерференционных полос в зависимости от перемещения зеркала. Он осознавал, что «кривая видности» содержит очень детальную информацию о спектре источника света. Уже в 1887 г. Майкельсон ом на основе тщательных наблюдений было показано, что «красная линия водорода является очень тесным дублетом; то же самое относится к зеленой линии таллия». Проведенное им математическое исследование этих вопросов наряду с важным вкладом, внесенным опубликованной вскоре после этого работой Рэлея, рассматриваются в следующем разделе, поскольку они служат отправной точкой для введения в основы метода преобразования Фурье.
|
1 |
Оглавление
|