Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 13. Линейные операторы в евклидовом пространствеРассмотрим
Определение
10. Линейный оператор
Существование и единственность транспонированного оператора устанавливаются совершенно аналогично тому, как это делалось в § 8 для сопряженного оператора в унитарном пространстве. Транспонированный оператор обладает следующими свойствами: 1.
2.
3.
4.
Введем ряд определений. Определение
11. Линейный оператор
Определение
12. Линейный оператор
Определение
13. Симметрический оператор
Определение
14. Симметрический оператор
Определение
15. Линейный оператор
Произвольный
линейный оператор
где
Действительно, из (107) следует
Из (107) и (108) вытекает
Обратно,
формулы (109) всегда определяют симметрический оператор
Определение
16. Оператор
Равенство
(110) в силу (106) можно переписать так:
Обратно,
из (111) вытекает (110) (при произвольных векторах
Мы
будем ортогональный оператор Симметрический, кососимметрический, ортогональный операторы суть частные виды нормального оператора. Рассмотрим
произвольный ортонормированный базис в данном евклидовом пространстве. Пусть
линейному оператору Аналогично тому, как это делалось в § 8 для сопряженного оператора, здесь устанавливается следующее предложение: Если
некоторое подпространство Для
исследования линейных операторов в евклидовом пространстве 1.
Векторы из 2.
Введем в рассмотрение «комплексные» векторы 3.
Естественным образом определяются операции сложения комплексных векторов и
умножения на комплексное число. Тогда совокупность всех комплексных векторов
образует 4.
В Если
Полагая
при этом
Если
выбрать вещественный базис, т. е. базис в Всякий
линейный оператор
Среди
всех линейных операторов в В вещественном базисе вещественные операторы определяются вещественными матрицами, т. е. матрицами с вещественными элементами. Вещественный
оператор
У
вещественного оператора вековое уравнение имеет вещественные коэффициенты,
поэтому умеете с корнем Двумерное
подпространство Тогда, как легко видеть,
Рассмотрим
вещественный оператор
где
Тогда
соответствующие этим характеристическим числам собственные векторы
Векторы
образуют
базис в евклидовом пространстве
В
базисе (113) оператору
Таким
образом, для каждого оператора
Транспонированный
оператор Нетрудно
показать, что для нормального оператора
У
симметрического оператора
Симметрический
оператор
У
кососимметрического оператора
после чего эти формулы принимают вид
Поскольку
У
ортогонального оператора
При этом базис (113) можно считать ортонормированным. Формулы (114) можно представить в виде
Из сказанного следует, что всякая вещественная ортогональная матрица вещественно- и ортогонально-подобна канонической ортогональной:
Пример.
Рассмотрим произвольное конечное вращение вокруг точки Итак,
Из
равенства Произвольное
конечное вращение твердого тело вокруг неподвижной точки может быть
осуществлено конечным поворотом на угол Рассмотрим
теперь произвольное конечное движение в трехмерном евклидовом пространстве,
переводящее точку
Движение
складывается из поворота
Докажем
существование такой точки
и найдем, что
Поэтому,
определив координаты
получим
для перемещения точки
Складывая почленно это равенство с вытекающим из (*) равенством
получим
Эта
формула показывает, что при рассматриваемом конечном движении радиус-вектор
точки, проведенный из Произвольное конечное движение в трехмерном евклидовом пространстве представляет собой винтовое перемещение вокруг некоторой неподвижной оси.
|
1 |
Оглавление
|