Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТСвободные жирные кислоты«Свободными жирными кислотами» (СЖК) называют жирные кислоты, находящиеся в неэстерифицированной форме; иногда их называют неэстерифицированными жирными кислотами (НЖК). В плазме крови длинноцепочечные СЖК образуют комплекс с альбумином, а в клетке — с белком, связывающим жирные кислоты, который называют Z-белком; фактически они никогда не бывают свободными. Короткоцепочечные жирные кислоты лучше растворяются в воде и находятся либо в виде неионизированной кислоты, либо в виде аниона жирной кислоты. Активация жирных кислотТак же как и в случае метаболизма глюкозы, жирная кислота прежде всего должна превратиться в активное производное в результате реакции, протекающей с участием АТР, и только после этого она способна взаимодействовать с ферментами, катализирующими дальнейшее превращение. В процессе окисления жирных кислот эта стадия является единственной, требующей энергии в виде АТР. В присутствии АТР и кофермента А фермент ацил-СоА-синтетаза (тиокиназа) катализирует превращение свободной жирной кислоты в «активную жирную кислоту» или ацил-СоА, которое осуществляется за счет расщепления одной богатой энергией фосфатной связи.
Присутствие неорганической пирофосфатазы, которая расщепляет богатую энергией фосфатную связь в пирофосфате, обеспечивает полноту протекания процесса активации. Таким образом, для активации одной молекулы жирной кислоты в итоге расходуются две богатые энергией фосфатные связи.
Ацил-СоА-синтетазы находятся в эндоплазмати-ческом ретикулуме, а также внутри митохондрий и на их наружной мембране. В литературе описан ряд ацил-СоА-синтетаз; они специфичны к жирным кислотам с определенной длиной цепи. Роль карнитина в окислении жирных кислотКарнитин
особенно много его в мышцах. Он образуется из лизина и метионина в печени и почках. Активация низших жирных кислот и их окисление могут происходить в митохондриях независимо от карнитина, однако длинноцепочечные ацил-СоА-производные (или СЖК) не могут проникать в митохондрии и окисляться, если предварительно не образуют ацилкарнитин-производных. На наружной стороне внутренней мембраны митохондрий имеется фермент карнитин-пальмитоилтрансфераза I, который переносит длинноцепочечные ацильные группы на карнитин с образованием ацилкарнитина; последний способен проникать в митохондрии, где находятся ферменты, катализирующие процесс ( Возможный механизм, объясняющий участие карнитина в окислении жирных кислот в митохондриях, приведен на рис. 23.1. Кроме того, в митохондриях находится другой фермент — карнитин-ацетилтрансфераза, который катализирует перенос короткоцепочечных ацильных групп между СоА и карнитином. Функция этого фермента пока не ясна.
Рис. 23.1. Роль карнитина в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий. Длиннопепочечный ацил-СоА не способен проходить через внутреннюю мембрану митохондрий, в то время как такой способностью обладает ацилкарнитин, образую цийся при Действии карнитин-пальмитонлтрансферазы I. Карнитин-ацилкарнитин-фанслоказа является транспортной системой. осуществляющей перенос молекулы ацилкарнитина через внутреннюю мембрану митохондрии, сопряженный с выходом мопскулы свободного карнитина. Затем при действии карнитин-пальмитоилтрансферазы 11, локализованной на внутренней поверхности внутренней мембраны митохондрии, ацилкарнитин взаимодействует с СоА. В результате в митохондриальном матриксе вновь образуется ацил-СоА. а карнитин высвобождается. Возможно,
он облегчает транспорт ацетильных групп через мембрану митохондрий. b-Окисление жирных кислотОбщее представление дает рис. 23.2. При 13-окислении жирных кислот 2 атома углерода одновременно отщепляются от карбоксильного конца молекулы ацил-СоА. Углеродная цепь разрывается
Рис. 23.2. Схема между атомами углерода в положениях Последовательность реакцийРяд ферментов, известных под общим названием «оксидазы жирных кислот», находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3). После проникновения ацильного фрагмента через мембрану митохондрий при участии карнитиновой транспортной системы и переноса ацильной группы от карнитина на Окисление жирных кислот с нечетным числом атомов углеродаb-Окисление жирных кислот с нечетным числом атомов углерода заканчивается на стадии образования трехуглеродного фрагмента - пропионил-СоА, который затем превращается в Энергетика процесса окисления жирных кислотВ результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при b-окислении пальмитиновой кислоты (см. скан) Рис. 23.3. Р Окисление жирных кислот. Длинноцепочечный ацит СоА последовательно укорачивается, проходя цикт за циклом ферментативные реакции 2—5; в результате каждого цикла происходит отщепление ацетил-СоА, катализируемое тиолазой (реакция 5). Когда остается четырехуглеродный ацильный радикал, то из него в результате реакции 5 образуются две молекулы ацетил-СоА. жирной кислоты, то в общей сложности получим 129 богатых энергией связей на 1 моль или Окисление жирных кислот в пероксисомахВ пероксисомах а- и b-Окисление жирных кислот
Клинические аспектыКетоз развивается при высокой скорости окисления жирных кислот в печени, особенно в тех случаях, когда оно происходит на фоне недостатка углеводов (см. с. 292). Подобное состояние возникает при приеме пищи, богатой жирами, голодании, сахарном диабете, кетозе у лактирующих коров и токсикозе беременности (кетозе) у овец. Ниже приводятся причины, вызывающие нарушение процесса окисления жирных кислот. Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей; он обусловлен либо нарушением биосинтеза карнитина; либо его «утечкой» в почках. Потери карнитина могут происходить при гемодиализе; больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса - окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Reye), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна. Снижение активности карнитинпальмитоилтрансферазы печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови, а снижение активности карнитин-пальмитоилтраисферазы мышц — к нарушению процесса окисления жирных кислот, в результате чего периодически возникает мышечная слабость и развивается миоглобинурия. Ямайская рвотная болезнь возникает у людей после употребления в пищу незрелых плодов аки (Blig-hia sapida), которые содержат токсин гипоглицнн, инактивирующий ацил-СоА-дегидрогеназу, в результате чего ингибируется процесс При дикарбоновой ацидурии происходит экскреция Болезнь Рефсума является редким неврологическим заболеванием, которое вызывается накоплением в тканях фитановой кислоты, образующейся из фитола; последний входит в состав хлорофилла, поступающего в организм с продуктами растительного происхождения. Фитановая кислота содержит метальную группу у третьего атома углерода, это блокирует ее (см. скан) Рис. 23.4. Последовательность реакций окисления ненасыщенных жирных кислот на примере, линолевой кислоты. удаляется при а-окислении, но у людей, страдающих болезнью Рефсума, имеется врожденное нарушение системы а-окисления, что приводит к накоплению фитановой кислоты в тканях. Синдром Цельвегера (Zellweger) или цереброгепаторенальный синдром является редким наследственным заболеванием, при котором во всех тканях отсутствуют пероксисомы. У больных, страдающих синдромом Цельвегера, в мозгу накапливаются Окисление ненасыщенных жирных кислотСоА-производные ненасыщенных жирных кислот атакуются ферментами, катализирующими Р-окисление до стадии, на которой в зависимости от локализации двойных связей образуется либо Перекисное окисление полиненасыщенных жирных кислот в микросомахNADPH-зависимое перекисное окисление ненасыщенных жирных кислот катализируется ферментами, локализованными в микросомах (см. с. 124). Антиоксиданты, например БГТ (бутилированный гидрокситолуол) и а-токоферол (витамин Е), ингибируют перекисное окисление липидов в микросомах.
|
1 |
Оглавление
|