Главная > Биохимия человека, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

МЕТАБОЛИЗМ АЦИЛГЛИЦЕРОЛОВ

Катаболизм триацилглицеролов

Путь катаболизма триацилглицеролов начинается с их гидролиза до жирных кислот и глицерола под действием липазы; в основном этот процесс происходит в жировой ткани. Высвободившиеся жирные кислоты поступают в плазму крови, где связываются сывороточным альбумином. Затем свободные жирные кислоты переходят в ткани, где они либо окисляются, либо вновь подвергаются эстерификации. Ткани многих органов (печени, сердца, почек, мышц, легких, семенников, мозга), а также жировая ткань способны окислять длинноцепочечные жирные кислоты. Однако поступление этих кислот в клетки мозга затруднено. Что касается судьбы глицерола, то она зависит от того, присутствует ли в данной ткани необходимый активирующий фермент — глнцеролкиназа (рис. 25.1). Значительное количество этого фермента обнаружено в печени, почках, кишечнике, бурой жировой ткани и в молочных железах в период лактации.

Биосинтез ацилглицеролов

Хотя в лабораторных условиях можно осуществить реакции, обратные реакциям расщепления триацилглицеролов, в организме биосинтез ацилглицеролов протекает иным путем. Перед образованием ацилглицеролов глицерол и жирные кислоты должны быть активированы при участии АТР. Глнцеролкиназа катализирует фосфорилирование глицерола, в результате образуется При отсутствии данного фермента

(см. скан)

Рис. 25.1. Биосинтез триацилглицеролов и фосфолипидов. 1 — моноацилглицсроловый путь; 2— глицеролфосфатный путь; 3 — диоксиацетонфосфатный путь. Фосфоэтаноламин-диацилглицсрол-трансфераза отсутствует в печени.

или при его низкой активности, как это имеет место в мышцах и жировой ткани, большая часть глицерол-3-фосфата должна образовываться из промежуточного соединения гликолитического пути — дигидроксиацетонфосфата, восстановление которого за счет NADH до глицерол-3-фосфата катализируется глицерол-3-фосфатдегидрогена зон (рис. 25.1).

А. Триацилглицерол. Жирные кислоты активируются в результате взаимодействия с СоА с образованием ацил-СоА; реакция катализируется ацил-СоА-синтетазой и протекает с участием АТР. Две молекулы ацил-СоА взаимодействуют с глицерол-3-фосфатом, в результате образуется 1,2-диацилглицеролфосфат (фосфатидат). Этот процесс протекает в две стадии. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата, а затем 1 -ацилглицерол-3-фосфат-ацилтрансфераза (лизофосфатидат-ацилтрансфераза) катализирует образование фосфати-дата. Далее фосфатидат гидролизуется фосфатидат—фосфогндролазой до -диацилглицерола. В слизистой оболочке кишечника функционирует путь образования 1,2-диацилглицерола из моноа-цилглицерола, реакция катализируется моноацилгли-церол-ацилтрансферазой. Далее 1,2-диацилглицерол ацилируется третьей молекулой ацил-СоА и превращается в триацилглицерол (эта реакция катализируется диацилглицерол-ацилтрансферазой). Большинство ферментов данного пути находятся в эндоплазматическом ретикулуме, и только некоторые, например глицерол-3-фосфат-ацилтрансфераза, в митохондриях. Фосфатидатфосфогидролазная активность обнаруживается главным образом в супернатантной фракции, часть ее связана с мембранами.

Дигидроксиацетонфосфат может ацилироваться и превращаться в лизофосфатидат путем востановления с участием NADPH. Относительно значения этого пути еще нет единого мнения. По-видимому, он играет важную роль в пероксисомах, где участвует в биосинтезе липидов с простой эфирной связью.

Б. Фосфоглицеролы. Эти фосфолипиды образуются либо из фосфатидата (например, фосфатидилинозитол), либо из 1,2-диацилглицерола (например, фосфатидилхолин и фосфатидилэтаноламин). При синтезе фосфатидилинозитола цитидинтрифосфат (СТР) взаимодействует с фосфатидатом с образованием цитидиндифосфатдиацилглицерола (CDP-диацилглицерол), который при участии фермента CDP-днацилглицерол—инозитолтрансферазы реагирует с инозитолом, в результате чего образуется фо-сфатидилинозитол (рис. 25.1). Последовательное фосфорилирование фосфатидилинозитола приводит к образованию сначала фосфатидилинозито)1-4-фосфата, а затем фосфатидилинозитол-4,5-бисфосфата. Последний гидролизуется с образованием диацилглицерола и инозитолтрифосфата (процесс запускается гормонами, в частности вазопрессином, которые повышают концентрацию ). Эти два продукта действуют как вторые посредники при действии гормонов (рис. 44.5).

В процессе биосинтеза фосфатидилхолина и фосфатидилэтаноламина (лецитина и кефалина) холин и этаноламин должны сначала перейти в активную форму. На первой стадии процесса в результате реакции с АТР образуется соответствующий монофосфат, который затем реагирует с СТР, в результате чего образуется либо цитидиндифосфохолин (-холин), либо цитидиндифосфоэтаноламин QCDP-этаноламин). В такой активной форме холин (или этаноламин) вступает в реакцию с 1,2-диацилгли-церолом; происходит перенос фосфорилированного основания (фосфохолина или фосфоэтаноламина) на диацилглицерол и образуется либо фосфатидилхолин, либо фосфатидилэтаноламин. Регуляторным ферментом на пути образования фосфатидилхолина является, по-видимому, цитидилтрансфераза.

Фосфатидилсерин синтезируется путем прямого взаимодействия фосфатидилэтаноламина и серина. Фосфатидилсерин может декарбоксилироваться, в результате образуется фосфатидилэтаноламин. В печени существует альтернативный путь, по которому фосфатидилхолин синтезируется из фосфатидилэтаноламина путем последовательного метилирования остатка этаноламина с участием S-аденозилметионина в качестве донора метильных групп.

В митохондриях присутствует фосфолипид кардиолипин (дифосфатидилглицерол). Он образуется из фосфатидилглицерола, который в свою очередь синтезируется из CDP-диацилглицерола (рис. 25.1) и глицерол-3-фосфата, как показано на схеме, приведенной на рис. 25.2.

Рис. 25.2. Биосинтез кардиолинина.

Сурфактант (поверхностно-активное вещество) легких представляет собой секрет, обладающий высокими поверхностно-активными свойствами, который препятствует спадению легочных альвеол. Эти свойства сурфактанта объясняются главным образом присутствием в нем фосфолипида дипальмитонлфосфатиднлхолнна, который образуется в легких доношенного плода непосредственно перед родами. Недостаток этого соединения в легких недоношенных детей является причиной расстройства у них дыхания.

В. Глицерофосфолипиды с простой эфирной связью и плазмалогены. Предшественниками плазмалогенов являются диацилглицеролы, содержащие в положении 1 (или 2) алкенильный остаток, образующий альдегидогенную эфирную связь. Предшественником глицеролового фрагмента является дигидроксиацетонфосфат (рис. 25.3); взаимодействуя с ацил-СоА, он превращается в 1-ацилдигидроксиацетон-фосфат. Затем происходит замещение ацильной группы на алкоксигруппу длинноцепочечного спирта с образованием 1-алкилдигидроксиацетонфосфата, содержащего простую эфирную связь; последний в присутствии NADPH превращается в 1-алкилглицерол-3-фосфат. Последующее ацилирование в положении 2 приводит к образованию -алкил, 2-ацилглицерол-З-фосфата (аналог фосфатидата, рис. 25.1), который гидролизуется до 1-алкил, 2-ацилглицерола (рис. 25.3). Плазмалогены образуются путем дегидрирования соответствующего производного 3-фосфоэтаноламина (рис. 25.3). В митохондриях большинство фосфолипидов представлено плазмалогенами. Тромбоцит - активирующий фактор (ТАФ) синтезируется из соответствующего производного 3-фосфохолина и идентифицирован как Он образуется в большинстве клеток крови, а также ряда тканей и при концентрации порядка

(см. скан)

Рис. 25.3. Биосинтез липидов с простой эфирной связью, плазмалогснов и тромбоцит-активируюшего фактора (ТАФ).

вызывает агрегацию тромбоцитов. ТАФ вызывает также снижение кровяного давления.

Распад и обновление глицерофосфолипидов

Многие сложные молекулы, например молекулы белков, расщепляются в тканях полностью. Поэтому для них можно определить время обновления. Фосфолипиды также активно распадаются, но в этом случае для каждой части молекулы время обновления различно. Например, время обновления фосфатной группы отличается от времени обновления 1-ацильной группы; это обусловлено наличием ферментов, вызывающих частичный гидролиз фосфолипидов, вслед за которым может снова происходить их синтез (рис. 25.4). Фосфолипаза катализирует гидролиз эфирной связи в положении 2 глицерофосфолипидов, в результате чего образуются свободная жирная кислота и лизофосфолипид, который в свою очередь реацилируется ацил-СоА при участии ацилтрансферазы.

Рис. 25.4. Метаболизм фосфатидилхолина (лецитина).

Рис. 25.5. Эфирные связи фосфолипидного субстрата, гидролизуемые фосфолипазами.

В альтернативном варианте лизофосфолипид (например, лизолецитин) атакуется лизофосфолипазой (фосфолипазой В), при этом отщепляется оставшаяся 1-ацильная группа и образуется соответствующее глицеролфосфорильное основание. Последнее в свою очередь может расщепляться гидролазой до глицерол-3-фосфата и основания. Фосфолипаза А, атакует эфирную связь фосфолипидов в положении 1 (рис. 25.5), а фосфолипаза С - в положении 3 (в последнем случае образуется 1,2-диацилглицерол и фосфорильное основание). Фосфолипаза С является одним из главных бактериальных токсинов. Фосфолипаза D, встречающаяся главным образом у растений, катализирует отщепление от фосфолипида азотистого основания.

Лизолецитин может синтезироваться по альтернативному пути с участием лецитин: холестерол ацилтрансферазы (ЛХТА). Этот фермент, находящийся в плазме крови и образующийся в печени, катализирует перенос остатка жирной кислоты из положения 2 молекулы лецитина на холестерол, в результате образуется сложный эфир холестерола. Считается, что именно под действием ЛХТА синтезируется большая часть сложных эфиров холестерола— компонентов липопротеинов плазмы крови. Последствия недостатка ЛХАТ обсуждаются на с. 281.

В фосфолипидах длинноцепочечные насыщенные жирные кислоты находятся главным образом в положении 1, в то время как полиненасыщенные жирные кислоты (например, предшественники простагландинов) - чаще всего в положении 2. Включение жирных кислот в молекулу лецитина происходит при

полном синтезе фосфолипида, при трансацилировании между эфиром холестерола и лизолецитином, а также при прямом ацилировании лизолецитина ацил-СоА. Таким образом может происходить постоянное обновление жирных кислот, особенно важным является включение в молекулы фосфолипидов незаменимых жирных кислот.

1
Оглавление
email@scask.ru