Главная > Проблемы гидродинамики и их математические модели
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава I. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ЖИДКОЙ СРЕДЫ

Напомним некоторые основные понятия динамики непрерывной среды. Движение среды, заполняющей некоторый объем, считается заданным, если в любой момент времени можно определить (т. е. вычислить с любой заданной точностью) поле скоростей частиц среды в любой точке х объема. В ряде случаев это общее определение нуждается в некоторых уточнениях. Границы области, занятой движущейся средой, могут меняться со временем; они могут быть неизвестны заранее и должны определяться вместе с полем скоростей по некоторым условиям; границы могут появляться в процессе движения, когда, например, внутри среды образуются каверны или возникают ударные волны.

Кроме поля скоростей должны, вообще говоря, определяться также и другие величины, характеризующие состояние среды: плотность давление температура и т. д., в зависимости от конкретной задачи.

Для математического описания движения сплошной среды необходимо создать подходящую математическую модель явления. При этом, как правило, учитывают только самые необходимые свойства среды и пренебрегают остальными, ибо чем шире постановка, тем труднее построить математическую модель, поддающуюся изучению, тем меньше получается конкретных результатов и тем труднее сопоставить теорию с экспериментом. Правильный выбор модели часто обеспечивает успех решения задачи,

1
Оглавление
email@scask.ru