Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 32. Пробивание при космических скоростяхВ предыдущей главе мы довольно подробно рассмотрели явление пробивания брони кумулятивными струями, которые имеют скорости порядка Здесь будет рассмотрена модель несжимаемой среды, которая отражает существенные стороны процесса пробивания при очень больших скоростях и, с другой стороны, позволяет провести расчеты с достаточной полнотой [4]. Одномерный случай. Здесь предлагаемая схема особенно проста. Рассмотрим удар пластинки толщиной а, которая летит со скоростью Пластинку-боек мы будем считать несжимаемой, абсолютно твердой, а тело представим как предельный случай стопки сложенных тонких и также абсолютно твердых пластинок, когда толщина пластинок стремится к нулю, а их число неограниченно возрастает так, что общая сумма толщин остается равной I (рис. 110).
Рис. 110. При ударе (который мы считаем неупругим) бойка о первую пластинку сохранится количество движения и вследствие увеличения массы произойдет потеря кинетической энергии, то же самое будет происходить при вовлечении в движение каждой следующей пластинки. Произведем подсчет потери кинетической энергии системы вдоль стержня в предельном случае. Пусть в рассматриваемый момент вовлечен в движение участок стержня длины х и пусть V — скорость стержня в этот момент. Когда в движение вовлекается следующий участок стержня толщиной
Решая это дифференциальное уравнение при очевидном начальном условии скоростей вдоль стержня
Зная скорости, мы можем получить распределение энергии
где
Обозначим через
В этот момент участок стержня Займемся подсчетом величины
Теперь задача свелась к чисто газодинамической Задаче. Ограничимся лишь самыми грубыми подсчетами в двух крайних случаях при следующих дополнительных предположениях. а) Пусть при разлете газового облака все его частицы получают одинаковую скорость. Эта скорость тогда должна определяться из (5) и для импульса мы получим выражение
б) Пусть каждый слой
а суммарный импульс
Пространственный случай. Имея в виду, например, образование кратеров при падении метеоритов на небесные тела, рассмотрим некоторую модификацию разобранной выше схемы.
Рис. 111. Именно, предположим, что летящее тело представляет собой шарик и что оно ударяется о полусферическую выемку радиуса Для упрощения расчетов придется еще более схематизировать модель. Мы будем считать, что задача сводится к удару тонкого полусферического слоя о толстый, который по аналогии с одномерным случаем будем представлять как набор тонких полусферических слоев, расположенных бесконечно близко друг к другу (рис. 111). Предположим, что во всех слоях скорости направлены по радиусам и что распределение скоростей происходит по схеме идеальной несжимаемой жидкости: в точке, удаленной от центра слоя на расстояние
где а — радиус внутренней выемки слоя-бойка и По аналогии с одномерным случаем будем считать, что в результате удара бойка в начальный период будет происходить наращивание его массы по схеме неупругих ударов, а кинетическая энергия системы переходить в тепло. Произведем расчеты, относящиеся к этому периоду, по-прежнему предполагая, что плотности бойка и среды, о которую он ударяется, равны 1. Пусть
В силу принятого предположения о распределении скоростей, в этот момент скорость в точках, расположенных на расстоянии х от центра, будет равна
При изменении
Решая это дифференциальное уравнение при начальном условии (9), найдем
Формула (10) дает теперь распределение скоростей в полусферических слоях в рассматриваемый момент, и мы можем найти кинетическую энергию части слоя, по которой уже прошел удар:
Отсюда с учетом (11) легко находится плотность распределения тепла в слое:
или, если ввести начальную энергию бойка
Как и в одномерном случае, предположим, что в момент, когда тепло на единицу объема достигает величины
Эта формула дает нижнюю границу радиуса воронки, которая образуется при ударе. Для упрощения расчетов на втором периоде по-прежнему будем считать, что
Теперь легко вычисляется импульс, который получает тело при ударе о него шарика:
где Можно провести расчет и в другом крайнем случае, когда каждый элемент Обобщение метода. Наиболее существенным пунктом описанного выше метода решения задачи о пробивании при космических скоростях является использование двух различных моделей среды: до тех пор, пока тепловая энергия процесса меньше некоторой критической величины, среда считается твердой и применяется схема неупругого удара; по достижении этой критической величины среда считается газом. Такое комбинирование различных моделей, выбираемых в соответствии с физическими условиями, может привести к решающему успеху и в других задачах. Рассмотрим, например, задачи, связанные с воздействием на металлы или пластические среды (такие, как плотная глина) в малые промежутки времени импульсов большой величины. Здесь можно применять следующий метод, который является обобщением описанного в предыдущих пунктах. В качестве начального распределения скоростей деформации среды принимается то распределение, которое имело бы место, если среда являлась бы идеальной жидкостью. Дальнейший расчет ведется в предположении, что области среды, где скорости деформации не превосходят некоторой фиксированной заранее (в зависимости от вязкости) постоянной с, рассматриваются как твердые тела. Мы получаем такую схему расчетов. Выбирается отрезок времени Этим методом хорошее совпадение с опытными данными можно получить, например, 1) в задаче о крешере: дан свинцовый цилиндр, стоящий на твердой основе; на верхнем его конце подрывается заряд ВВ и требуется выяснить, во что превратится цилиндр после взрыва; 2) в задаче о форме полости, полученной при взрыве заряда эллипсоидальной формы в неограниченном массиве глины.
Рис. 112 В Институте гидродинамики Сибирского отделения АН СССР проведен ряд экспериментов, моделирующих падение метеоритов на небесные тела. Производились удары стальной частицей диаметром 1,7 мм по пластинкам из дунита различной толщины при скоростях удара
Рис. 113. При скоростях На рис. 112 показаны фотографии среза пластинок из дунита различной толщины после удара. На них хорошо виден эффект действия ударной волны, прошедшей впереди частицы, — наличие этой волны и учитывают описанные выше схемы. На рис. 113, а приведен график зависимости отношения глубины пробития
|
1 |
Оглавление
|