Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 43. Камуфлетный взрывЗдесь мы рассмотрим задачу о расширении полости, которая возникает при подземных взрывах, не сопровождающихся образованием воронки на поверхности Земли, — они называются камуфлетными взрывами. Паковка. Одной из характерных особенностей деформации грунта, отличающих его от воды и упругих тел, является так называемая паковка: если грунт сильно сжать, а затем снять давление, то конечный объем грунта будет меньше первоначального. Введем величину
характеризующую сжатие грунта
Рис. 148. Такое поведение грунта и объясняет эффект паковки — при снятии давления плотность близка к Задача о расширении полости. Пусть в грунте, обладающем описанными выше свойствами, в начальный момент Прочностными и пластическими свойствами грунта мы пренебрегаем, а давление в полости считаем меняющимся по адиабатическому закону:
где у — постоянная, Сразу же после заполнения полости газами по грунту распространяется ударная волна, которая называется волной паковки. Фронт этой волны мы будем считать сферическим, а радиус сферы збозначим через Будем считать, что в шаровом слое
(где
где К — некоторая функция от времени. К этим уравнениям следует добавить граничные условия. На внутренней границе
где
где Из (4) следует, что
а (5) переписывается в виде
Далее, подставляя (4), где положено
Здесь R можно выразить через а по формуле
Таким образом, (9) представляет собой обыкновенное дифференциальное уравнение второго порядка для радиуса
так что начальные условия для этого уравнения известны и, следовательно, закон изменения газовой полости вполне определен. Приближенное решение. Опыты показывают, что радиус полости довольно быстро становится в 10—20 раз больше первоначального. Поэтому на протяжении большей части движения в (8) можно пренебречь вторым слагаемым в правой части. Мы получим, что
где
Полагая
Оно решается обычным методом вариации постоянного, и его решение, удовлетворяющее начальному условию
Простой анализ этого выражения показывает, что скорость расширения газовой полости а сначала увеличивается, затем достигает максимального значения и убывает до нуля. Конечный радиус полости Замечания. Уравнение (9) можно получить и непосредственно из энергетических соображений. При этом можно подсчитать энергию, затрачиваемую на необратимую деформацию грунта. Расчеты показывают, что доля энергии ВВ, передаваемая грунту, в диапазоне значений Излагаемая здесь модель камуфлетного взрыва была впервые предложена А. Ю. Ишлинским, Н. В. Зволинским и И. 3. Степаненко в 1954 году [2]. Позднее появились более сложные модели, учитывающие пластические свойства грунта, переменную паковку, прочностные характеристики и разрушение среды. Эти усложнения модели имеют целью лучшее приближение к натуре. Однако современное состояние наших знании о физико-механических свойствах грунтов и продуктов детонации ВВ еще не позволяет поставить и решить задачу точно. Перегрузка задачи большим количеством трудно определяемых параметров часто оказывается вредной. Конечно, при соответствующей подгонке этих параметров всегда можно добиться совпадения данных расчетов с данными эксперимента. Но цель построения механической модели физического явления состоит в выяснении того вклада, который вносит в общую картину процесса то или иное свойство среды: сжимаемость, прочность и т. д. Иногда бывает и так, что различные модели формально сводятся к одним и тем же соотношениям. Например, модель грунтовой среды с условием пластичности Прандтля и с постоянной паковкой приводит к дифференциальному уравнению такого же вида, как (9). Разница состоит только в выражениях для коэффициентов.
|
1 |
Оглавление
|