Главная > Учебное пособие по линейной алгебре
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 3. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ

Важнейшим понятием в теории линейных пространств является линейная зависимость векторов. Прежде чем определить это понятие, рассмотрим несколько примеров.

Примеры. 1. Дана следующая система трех векторов из пространства Тк:

Легко заметить, что или

Здесь .

2. Возьмем теперь другую систему векторов из

Соотношение, аналогичное равенству (1), для этой системы векторов непосредственно усмотреть затруднительно. Однако нетрудно проверить, что

Коэффициенты 4, —7,5 соотношения (2) можно было бы найти следующим образом. Обозначим их через считая неизвестными, будем решать векторное уравнение:

Произведя указанные операции умножения и сложения и переходя к равенству компонент векторов в (2), получаем однородную систему линейных уравнений относительно

Одним из решений этой системы является:

3. Рассмотрим систему векторов:

Равенство

приводит к системе уравнений, имеющей единственное — нулевое — решение. (Проверьте!) Таким образом, из равенства (3) следует,

что Иначе говоря, равенство (3) выполняется только при

Системы векторов в примерах 1—2 являются линейно зависимыми, система примера 3 — линейно независимой.

Определение 3. Система векторов линейного пространства над полем называется линейно зависимой, если существуют не все равные нулю числа поля Я, такие, что

Если же для векторов равенство имеет место только при то система векторов называется линейно независимой.

Заметим, что свойство линейной зависимости и независимости является свойством системы векторов. Однако в литературе широко используют те же прилагательные в применении непосредственно к самим векторам и говорят, допуская вольность речи, «система линейно независимых векторов» и даже «векторы линейно независимы».

Если в системе имеется всего один вектор а, то при по свойству 6 (§ 2) из следует Значит, система, состоящая из одного ненулевого вектора, линейно независима. Напротив, любая система векторов содержащая нулевой вектор 0, линейно зависима. Например, если то

Если система двух векторов линейно зависима, то имеет место равенство при (или . Тогда

т. е. векторы пропорциональны. Верно и обратное, так как из следует Значит, система двух векторов линейно зависима тогда и только тогда, когда векторы пропорциональны.

Пропорциональные векторы из лежат на одной прямой; в связи с этим и в общем случае пропорциональные векторы иногда называют коллинеарными.

Отметим некоторые свойства линейной зависимости векторов.

Свойство 1. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.

Пусть линейно зависима подсистема

системы

Тогда существуют не все равные нулю числа такие, что

Добавив в левую часть этого равенства остальные векторы данной системы с нулевыми коэффициентами, получим требуемое.

Из свойства 1 следует, что всякая подсистема линейно независимой системы векторов линейно независима.

Свойство 2. Если система векторов

линейно независима, а система векторов

линейно зависима, то вектор линейно выражается через векторы системы (4).

Так как система векторов (5) линейно зависима, то существуют не все равные нулю числа такие, что

Если то и тогда ненулевые коэффициенты будут среди что означало бы линейную зависимость системы (4). Значит, и

Свойство 3. Упорядоченная система ненулевых векторов

линейно зависима тогда и только тогда, когда некоторый вектор является линейной комбинацией предшествующих векторов.

Пусть система линейно зависима. Так как то вектор линейно независим. Обозначим через наименьшее натуральное число, при котором система линейно зависима. (Такое существует: в крайнем случае, если системы линейно независимы, то Тогда существуют не все равные нулю числа такие, что выполняется равенство

Если бы то ненулевые коэффициенты были бы среди и выполнялось бы равенство

что означало бы линейную зависимость системы но это противоречило бы выбору числа Значит, и потому

Обратно, из равенства (7) по свойству 1 следует линейная зависимость системы

Из свойства 3 легко следует, что система векторов тогда и только тогда линейно зависима, когда хотя бы один ее вектор линейно выражается через остальные. В этом смысле и говорят, что понятие линейной зависимости эквивалентно понятию линейной выражаемости.

Свойство 4. Если вектор х линейно выражается через векторы системы

а вектор линейно выражается через остальные векторы системы (8), то вектор также линейно выражается через эти векторы системы (8).

В самом деле,

Теперь можно доказать одну из важнейших теорем о линейной зависимости векторов.

Теорема 1. Если каждый вектор линейно независимой системы

есть линейная комбинация векторов

то Другими словами, в линейно независимой системе векторов, являющихся линейными комбинациями векторов число векторов не может быть больше

Доказательство. 1-й шаг. Построим систему

По условию каждый вектор системы (9), в частности вектор линейно выражается через векторы (10), а потому система (11) линейно зависима. По свойству 3 в системе (11) некоторый вектор где линейно выражается через предшествующие векторы, а потому и через векторы системы

полученной из (11) удалением вектора Отсюда по свойству 4 имеем: каждый вектор системы (9) линейно выражается через векторы системы (12).

2-й шаг. Применяя те же рассуждения, что и на шаге, к системам векторов

и (12) и учитывая, что система векторов линейно независима, мы получим систему векторов

через которые линейно выражаются все векторы системы (9).

Если допустить, что то, продолжая этот процесс, мы через шагов исчерпаем все векторы и получим систему

такую, что каждый вектор системы (9), в частности линейно выражается через векторы системы (14). Тогда система (9) оказывается линейно зависимой, что противоречит условию. Остается принять, что

Рассмотрим теперь, что означает линейная зависимость векторов в различных пространствах.

1. Пространство Если система двух векторов линейно зависима, то или т. е. векторы коллинеарны. Верно и обратное. Система трех векторов пространства линейно зависима тогда и только тогда, когда они лежат в одной плоскости. (Докажите!) Система четырех векторов пространства всегда линейно зависима. В самом деле, если какая-либо подсистема нашей системы линейно зависима, то и вся система линейно зависима. Если же никакая собственная подсистема не является линейно зависимой, то по предыдущему это означает, что никакие три вектора нашей системы не лежат на одной плоскости. Тогда из геометрических соображений следует существование вещественных чисел таких, что параллелепипед с ребрами-векторами будет иметь диагональ т. е.

2. Пространство Линейная зависимость векторов пространства как строк матрицы, рассматривалась нами ранее при изучении систем линейных уравнений. В связи с этим будем считать известным, что максимальное число линейно независимых векторов системы

т. е. строк или столбцов матрицы

есть ранг матрицы (ранг . В частности, система векторов (15) линейно независима, если ранг и линейно зависима, если ранг Таким образом, решение вопроса о линейной зависимости системы векторов сводится к вычислению ранга матрицы.

Укажем, как можно найти сами зависимости (если они существуют), т. е. коэффициенты в равенстве

Условием равенства векторов из являются равенства при Нулем 0 пространства является вектор . Отсюда следует, что (векторное) уравнение (16) относительно неизвестных чисел равносильно системе уравнений:

Таким образом, вопрос о нахождении линейных зависимостей между векторами в сводится к решению однородной системы уравнений. В частности, система векторов (15) будет линейно независимой, если последняя система уравнений имеет только нулевое решение, и зависимой в противном случае. Примером линейно независимой системы векторов пространства может служить совокупность векторов:

3. В пространстве линейная зависимость векторов

означает, что соотношение

выполняется тождественно относительно при некоторых постоянных не всех равных нулю; здесь — функция, равная нулю при любом Например, функции линейно зависимы, так как Заметим, что линейно независимы, так как равенство (при любом фиксированном

означает, что слева мы имеем нуль-многочлен, и потому

Упражнения

(см. скан)

Categories

1
Оглавление
email@scask.ru