Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.9. Трехуровневая системаВ оптйческих квантовых генераторах, работающих на твердых кристаллических телах, перевод системы в возбужденное состояние можно осуществить с помощью внешнего электромагнитного поля. При таком способе достижения инверсной населенности использование только двух уровней невозможно, так как вероятности переходов равны. Поэтому при облучении можно только уменьшить разность
Рис. 1.9. Переходы в трехуровневой системе. Исходя из этих соображений, Н. Г. Басовым и А. М. Прохоровым была предложена система с гремя уровнями. Рассмотрим такую систему с темя энергетическими уровнями Под действием излучения от внешнего источника системой поглощается энергия, соответствующая частоте широкой полосы уровня 3. Полосу поглощения уровня 3 стараются подобрать по возможности более широкой. Это увеличивает к. п. д. квантового генератора. Газоразрядные лампы или другие источники энергии, как правило, имеют широкий спектр излучения. Поэтому чем шире уровень 3, тем большая доля энергии накачки используется на возбуждение квантовой системы. Обычно излучение, вызывающее переход атомов на возбужденные уровни, называют излучением накачки, а сам процесс создания инверсной населенности с помощью внешнего электромагнитного излучения называется накачкой. При выборе системы с тремя уровнями обычно стремятся выполнить следующие условия. Вероятность безызлучательного перехода
При этом условии через время Вероятность спонтанного перехода
Это означает, что уровень 2 должен быть значительно более устойчивым (метастабильным) по сравнению с уровнем 3, что обеспечивает накопление возбужденных атомов на уровне 2. При достаточно высокой мощности накачки может быть достигнута инверсия населенностей между уровнем 2 и основным уровнем, но поскольку время жизни уровня 3 мало, то возбужденные атомы не задерживаются на нем и безызлучательно переходят на более долгоживущий уровень 2, создавая инверсную населенность этого уровня по отношению к уровню 1. Время жизни уровня 2 должно быть достаточно большим, чтобы накопить на нем энергию, - необходимую для генерации. Например, для рубина Учитывая изменения населенностей всех трех уровней вследствие различных переходов, кинетические уравнения переходов в квантовой трехуровневой системе можно записать в следующем виде:
Эти уравнения записаны в упрощенной форме, так как в них не учтено вырождение уровней. Если энергетические уровни характеризуются некоторыми степенями вырождения
где Если далее предположить, что накопление на уровне 3 не происходит, как в случае рубинового ОКГ, т. е.
то уравнение (1.65) примет вид
а сама система превратится в двухуровневую, так как
Учитывая эти допущения, преобразуем уравнения (1.63) и (1.65) к следующему виду:
Так как в рубине скорость перехода с уровня 3 на метастабильный уровень 2 значительно больше скорости перехода с уровня 3 на уровень 1, т. е.
В стационарном режиме, т. е. при
Из этого уравнения видно, что необходимое условие генерации
Величина вероятностей переходов атомов с уровня
где С учетом значения
Для рубина, например, при значениях Согласно выражениям (1.71), (1.72) и (1.74) вероятность генерации и пороговая мощность накачки существенно зависят от вероятности спонтанного перехода Этот переход обусловливает флюоресценцию возбужденного кристалла рубина, т. е. потери на некогерентное излучение. Доля флюоресценции в излучении рубинового ОКГ довольно велика. Это приводит к тому, что энергия, необходимая для возбуждения половины всех атомов из основного состояния, не переходит в когерентное излучение.
|
1 |
Оглавление
|