Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
67. Решение задачи Дирихле для шара в осесимметричном случае разложением по многочленам Лежандра.Осесимметричная задача Дирихле для шара радиуса R с центром в начале координат состоит в определении функции и
Выше мы установили, что для Ввиду линейности и однородности уравнения Лапласа его решением будет также функция
где
В предположении, что тождество (21.21) имеет место, мы можем эти коэффициенты найти, воспользовавшись свойством ортогональности многочленов Лежандра (свойство 5 в предыдущем п. 66). Действительно, умножим тождество (21.21) на
Элемент площади поверхности сферы
Здесь интегрирование по Таким образом, в правой части равенства (21.22) все члены суммы, кроме одного, равны нулю; действительно, когда
откуда следует, что
Так как Мы уже имели выше (см. п. 59) решение задачи Дирихле для шара в виде шпеграла Пуассона в более общем (не осесимметричном) случае зависимости граничной функции Формула (21.20), представляющая решение задачи Дирихле (в осесимметричном случае) в виде ряда по многочленам Лежандра, имеет некоторые преимущества перед решением в виде шпеграла Пуассона. Мы ограничимся только одним простейшим следствием из этой формулы. Очевидно, что если граничные значения (7 (9) сами являются одним из многочленов Лежандра или их конечной линейной комбинацией, то в правой части формулы (21.20) останется только одно или несколько слагаемых, отличных от нуля. Например, если
Таким образом, по формуле (21.20) решением задачи Дирихле для шара радиуса R при граничных значениях
где
так что решением задачи Дирихле при эгом граничном условии будет
Изложенный выше метод Фурье решения задачи Дирихле для шара применим не только в осесимметричном случае. Однако в общем случае при разделении переменных в уравнении Лапласа в сферических координатах мы получаем вместо уравнения Лежандра (21.12) более сложное уравнение, решения которого — так называемые присоединенные функции Лежандра — тесно связаны с многочленами Лежандра. Соответственно и формула решения в виде ряда примет более сложный вид. Подробнее эти вопросы рассматриваются в специальных руководствах.
|
1 |
Оглавление
|