Главная > ЗНАКОМСТВО С НЕЛИНЕЙНОЙ ДИНАМИКОЙ (В.С.Анищенко)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Математическим образом режима функционирования диссипативной динамической системы служит аттрактор — предельное множество траекторий в фазовом пространстве системы, к которому стремятся все траектории из некоторой окрестности этого множества. Если это предельное множество есть устойчивое состояние равновесия — аттрактор системы будет просто неподвижной точкой, если это устойчивое периодическое движение — аттрактором будет замкнутая кривая, называемая предельным циклом. Раньше считалось, что аттрактор есть образ исключительно устойчивого режима функционирования системы. Сейчас мы понимаем, что режим детерминированного хаоса тоже аттрактор в смысле определения предельного множества траекторий в ограниченной области фазового пространства (см. рис. 1.6). Однако такой аттрактор имеет два существенных отличия: траектория такого аттрактора непериодическая (она не замыкается) и режим функционирования неустойчив (малые отклонения от режима первоначально нарастают). Именно эти отличия и привели к необходимости ввести в рассмотрение новый термин. С легкой руки известного математика $\Phi$. Такенса такие аттракторы стали называть странными.

Каков критерий \»странности\»? Как установлено теоретиками, основным критерием странности аттрактора является неустойчивость траектории. Причем неустойчивость обязана быть экспоненциальной! Это означает, что малое возмущение режима $D(O)$ должно во времени увеличиваться по экспоненте:
\[
D(t)=D(O) e^{\lambda t}, \quad \lambda=\lim _{t \rightarrow \infty} \frac{1}{t} \ln \frac{D(t)}{D(O)},
\]

где $\lambda$ — показатель Ляпунова.
Оказалось, что положительность величины $\lambda$ говорит не только об экспоненциальной неустойчивости режима колебаний, но доказывает наличие в системе перемешивания. Если установлено, что исследуемый режим имеет положительный показатель Ляпунова $\lambda>0$, то следствием будут: непериодичность в зависимости от времени любой из координат состояния, сплошной спектр мощности (в спектре колебаний присутствуют все частоты из некоторого интервала) и спадающая во времени автокорреляционная функция. До недавнего времени с таким поведением указанных характеристик однозначно связывали представления о случайном процессе. Теперь мы знаем, что подобными свойствами может обладать процесс, порождаемый детерминированными законами. Это обстоятельство и послужило основанием называть такие процессы детерминированным хаосом.

1
Оглавление
email@scask.ru