Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
14. Арифметические действия над десятичными дробями.При сложении десятичных дробей надо записать их одну под другой так, чтобы одинаковые разряды были друг под другом, а запятая — под запятой, и сложить дроби так, как складывают натуральные числа. Сложим, напрнмер, дроби 12,7 и 3,442. Первая дробь содержит одну цифру после запятой, а вторая — три. Чтобы выполнить сложение, преобразуем первую дробь так, чтобы после запятой было три цифры:
Аналогично выполняется вычитание десятичных дробей. Найдем разность чисел 13,1 и 0,37:
При умножении десятичных дробей достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а затем в результате справа отделить запятой столько цифр, сколько их стоит после запятой в обоих множителях суммарно. Например, умножим 2,7 на 1,3. Имеем Если в произведении получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:
Рассмотрим умножение десятичной дроби на 10, 100, 1000 и т. д. Пусть нужно умножить дробь 12,733 на 10. Имеем 12 733•10=127,33. Таким образом, умножение десятичной дроби на Ю сводится к переносу запятой на одну цифру вправо. Вообще чтобы умножить десятичную дробь на 10, 100, 1000, надо в этой дроби перенести запятую на 1, 2, 3 цифры вправо Сприписав в случае необходимости к дроби справа определенное число нулей). Например, Деление десятичной дроби на натуральное число выполняется так же, как деление натурального числа на натуральное, а запятую в частном ставят после того, как закончено деление целой части. Пусть надо разделить 22,1 на 13:
Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:
Рассмотрим теперь деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12. Для этого и в делимом, и в делителе перенесем запятую вправо на столько цифр, сколько их имеется после запятой в делителе (в данном примере на две). Иными словами, умножим делимое и делитель на 100 — от этого частное не изменится. Тогда нужно разделить дробь 257,6 на натуральное число 112, т. е. задача сводится к уже рассмотренному случаю:
Чтобы разделить десятичную дробь на Как для натуральных чисел деление не всегда выполнимо, так оно не всегда выполнимо и для десятичных дробей. Разделим для примера 2,8 на 0,09:
В результате получается так называемая бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям. Например:
Может оказаться так, что одни числа записаны в виде обыкновенных дробей, другие — в виде смешанных чисел, третьи — в виде десятичных дробей. При выполнении действий над такими числами можно поступать по-разному: либо обратить десятичные дроби в обыкновенные и применить правила действий над обыкновенными дробями, либо обратить обыкновенные дроби и смешанные числа в десятичные дроби (если это возможно) и применить правила действий над десятичными дробями.
|
1 |
Оглавление
|