Главная > Устройства и элементы систем автоматического регулирования и управления. Книга 1. Измерительные устройства, преобразующие элементы и устройства
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6. КОМПЕНСАЦИОННЫЕ АКСЕЛЕРОМЕТРЫ

В компенсационных акселерометрах с позиционной обратной связью механическая пружина заменена «электрической пружиной». Под последней понимается электромеханическое устройство, которое создает момент, компенсирующий инерционный момент, возникающий под влиянием измеряемого ускорения.

Рис. VI 1.23. Компенсационный акселерометр маятникового типа

Рис. VI 1.24. Поплавковый вариант компенсационного акселерометра маятникового типа: 1 — индуктивный преобразователь перемещения; 2 — жидкость; 3 — поплавок; 4 — моментный датчик; 5 — усилитель

На рис. VI 1.23 приведена одна из схем компенсационного акселерометра маятникового типа. Отклонение маятника 1 под действием ускорения преобразуется индуктивным датчиком 4 в электрический сигнал, который после усиления подается на обмотку моментного датчика 2. Последний создает компенсирующий момент. Электрический ток на выходе фазочувствительного усилителя 3 и падение напряжения ивих (создаваемое этим током на добавочном сопротивлении) пропорциональны измеряемому ускорению х. Для демпфирования колебаний маятника усилитель содержит корректирующее звено.

На рис. VI 1.24 приведена схема варианта поплавкового компенсационного акселерометра. Подъемная сила поплавка близка к весу всей подвижной части прибора. Центр тяжести поплавка смещен относительно оси поплавка на величину что и обеспечивает необходимую маятниковость. Поплавковые приборы имеют высокую чувствительность вследствие малых погрешностей от сил трения.

Схема компенсационного акселерометра с массой на упругом подвесе, емкостным датчиком сигналов и электромеханическим датчиком, создающим компенсирующую силу, изображена на рис. VI 1.25. Эта схема позволяет ослабить влияние гистерезиса упругого подвеса и нелинейности его характеристики при условии, что жесткость «электрической пружины» намного превышает жесткость упругого подвеса.

Рис. VII.25. Компенсационный акселерометр с упругим подвесом: 1 — емкостный преобразователь перемещения, 2 — инерционная масса; 3 — упругий подвес, 4 — обмотка датчика силы, 5 — усилитель

Рис. VII.26. Схема интегрирующего акселерометра

В силовом датчике, применяемом в схеме «электрической пружины», развиваемая сила должна быть пропорциональна току, протекающему в его обмотке.

Интегрирующие акселерометры. Путевую скорость полета можно определять путем непрерывного интегрирования горизонтальных ускорений, начиная с момента взлета. Для определения пройденного пути полученную величину нужно проинтегрировать еще раз. Интегрирование может быть выполнено двумя способами с помощью:

отдельного электрического или электромеханического интегратора, на вход которого подается сигнал акселерометра, пропорциональный ускорению;

механического или электромеханического интегрирующего устройства, совмещенного с чувствительным элементом акселерометра.

Рассмотрим последний способ подробнее.

На рис. VI 1.26 приведена одна из возможных схем интегрирующего акселерометра. Под влиянием ускорения направленного перпендикулярно плоскости чертежа, маятник 6 отклонится, а в индуктивном датчике 5 возникает сигнал. Этот сигнал, усиленный усилителем заставит вращаться электродвигатель 3. На его оси укреплен постоянный магнит 2, который при вращении вызывает в токопроводящем колпачке 1 вихревые токи. Взаимодействие вихревых токов с полем магнита создает вращающий момент прикладываемый к оси маятника. Вращающий момент пропорционален скорости вращения магнита а:

Но момент уравновешивает инерционный момент акселерометра , следовательно, в установившемся процессе

а угол поворота магнита будет пропорционален интегралу по времени от измеряемого ускорения:

где — длина маятника; — масса маятника; х — измеряемое ускорение.

Рис. VII.27. Схема акселерометра с двойным интегрированием ускорений

Угол а (уменьшаемый с помощью зубчатого редуктора) является выходной координатой интегрирующего акселерометра. Принципиальная схема акселерометра с двойным интегрированием ускорений изображена на рис. VI 1.27. Чувствительным элементом акселерометра является маятник 5, на оси которого укреплен статор 2 электродвигателя.

Внутри статора может свободно вращаться ротор 1. Отклонение маятника от нулевого положения вызывает сигнал в индуктивном датчике 4, подаваемый на усилитель выхода усилителя — на статор электродвигателя. Вращающий момент развиваемый электродвигателем, вызывает вращение ротора с ускорением

где момент инерции ротора.

Реактивный момент, приложенный со стороны ротора к статору, также равен и направлен навстречу инерционному моменту, развиваемому маятником 5 под влиянием ускорения X

В положении равновесия моменты и (приложенные к оси маятника) взаимно компенсируются. Приравнивая Мер найдем

откуда

Угол а (уменьшаемый с помощью зубчатого редуктора) является выходной величиной акселерометра с двойным интегрированием. Погрешность прибора обусловлена главным образом силами трения в подвесе маятника и накапливается пропорционально квадрату времени его работы. Эту погрешность можно снизить уменьшением сил трения и увеличением момента инерции ротора электродвигателя.

Для интегрирования ускорений можно использовать струнный акселерометр. Он представляет собой вибрирующее устройство, состоящее из струны, собственная частота которой меняется в зависимости от ее натяжения, создаваемого инерционной массой под воздействием измеряемого ускорения. Изменение собственной частоты пропорционально корню квадратному из силы натяжения струны, т. е.

где К — коэффициент, зависящий от размеров струны и величины инерционной массы.

Если инерционную массу подвесить между двумя струнами, имеющими начальное натяжение то при наличии ускорения направленного вдоль струн, натяжение одной струны будет увеличиваться на величину а другой — соответственно уменьшится.

При этом собственные частоты колебаний струн

Совместное решение этих уравнений дает

Если в измерительном устройстве поддерживается постоянной сумма частот то разность частот пропорциональна измеряемому ускорению х.

Рис. VII.28. Структурная схема компенсационного акселерометра маятникового типа

При этом интеграл разности частот собственных колебаний двухструнного акселерометра за определенный промежуток времени пропорционален интегралу от ускорения, т. е. приращению скорости за тот же промежуток времени. Для интегрирования сигналов струнного акселерометра можно применить интеграторы цифрового типа или счетчики импульсов, обладающие высокой степенью точности. Методы интегрирования ускорений с помощью гироскопических интегрирующих акселерометров с гиромаятниками приведены в гл. VIII, § 6.

Определение передаточных функций компенсационных акселерометров. Передаточная функция компенсационного акселерометра маятникового типа (рис. VI 1.28) определяется с помощью структурной схемы, показанной на рис. VII.28:

где и — масса и плечо маятника;

момент инерции подвижной системы;

— передаточные коэффициенты индуктивного датчика, моментного датчика и усилителя;

R — выходное электрическое сопротивление;

— передаточная функция корректирующего звена.

Выражение (VI 1.31) преобразуется к виду

где — чувствительность акселерометра;

— коэффициент жесткости электрической пружины.

При отсутствии корректирующего звена, что соответствует система будет динамически неустойчивой. При введении

идеального стабилизирующего звена передаточная функция системы

где

Практически реализуемо стабилизирующее звено с передаточной функцией вида

При введении такого звена передаточная функция системы

Условием динамической устойчивости данной системы (при положительных коэффициентах характеристического уравнения) является неравенство

Выбор оптимальной передаточной функции корректирующего звена производится методами синтеза, основанными на использовании логарифмических амплитудно-частотных характеристик. В случае подвешивания инерционной массы на упругом подвесе необходимо учитывать жесткость механической пружины. Структурная схема подобного акселерометра с поступательно-движущейся инерционной массой (рис. VI 1.25) показана на рис. VI 1.29. Передаточная функция этой системы

где — масса подвижной системы;

— передаточный коэффициент емкостного датчика;

— жесткость упругого подвеса.

Рис. VII.29. Структурная схема компенсационного акселерометра С упругим подвесом

Обозначая чувствительность акселерометра через и жесткость электрической пружины через получим окончательное выражение для передаточной функции акселерометра с упругим подвесом:

Если то передаточная функция (VI 1.37) акселерометра с упругим подвесом приближается к передаточной функции (VI 1.32) акселерометра с неупругим подвесом. Передаточные функции других типов компенсационных акселерометров определяются аналогичным образом, с помощью их структурных схем.

1
Оглавление
email@scask.ru