Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Постулаты Бора. Абсолютная неустойчивость планетарной модели Резерфорда и вместе с тем удивительная закономерность атомных спектров, и в частности их дискретность, привели Н.Бора к необходимости сформулировать (1913) два важнейших постулата квантовой физики: Такое же соотношение выполняется и в случае поглощения, когда падающий фотон переводит атом с низшего энергетического уровня $E_{1}$ на более высокий $E_{2}$, а сам исчезает. Соотношение (2.17) называют правилом частот Бора. Заметим, что переходы атома на более высокие энергетические уровни могут быть обусловлены и столкновением с другими атомами. Таким образом, атом переходит из одного стационарного состояния в другое скачками (их называют квантовыми). Что происходит с атомом в процессе перехода — этот вопрос в теории Бора остается открытым. Опыты Франка и Герца (1913). Эти опыты дали прямое доказательство дискретности атомных состояний. Идея опытов заключается в следующем. При неупругих столкновениях электрона с атомом происходит передача энергии от электрона атому. Если внутренняя энергия атома изменяется непрерыв- но, то атому может быть передана любая порция энергии. Если же состояния атома дискретны, то его внутренняя энергия при столкновении с электроном должна изменяться также дискретно — на значения, равные разности внутренней энергии атома в стационарных состояниях. Следовательно, при неупругом столкновении электрон может передать атому лишь определенные порции энергии. Измеряя их, можно определить значения внутренних энергий стационарных состояний атома. Это и предстояло проверить экспериментально с помощью установки, схема которой показана на рис. 2.5. В баллоне с парами ртути под давлением порядка 1 мм рт.ст. ( $\approx 130$ Па) имелись три электрода: $\boldsymbol{K}$ — катод, $C$ — сетка и $A$ — анод. Электроны, испускаемые горячим катодом вследствие термоэлектронной эмиссии, ускорялись разностью потенциалов $V$ между катодом и сеткой. Величину $V$ Таким образом, если какой-то электрон проходит сквозь сетку с энергией, меньшей 0,5 эВ, то он не долетит до анода. Только те электроны, энергия которых при прохождении сетки больше 0,5 эВ, попадут на анод, образуя анодный ток $I$, доступный измерению. В опытах (см. рис. 2.5) исследовалась зависимость анодного тока $I$ (гальванометром $G$ ) от ускоряющего напряжения $V$ (вольтметром V). Полученные результаты представлены на рис. 2.6. Максимумы соответствуют значениям энергии $E_{1}=4,9$ эВ, $E_{2}=2 E_{1}, E_{3}=3 E_{1}$ и т. д.* Такой вид кривой объясняется тем, что атомы действительно могут поглощать лишь дискретные порции энергии, равные 4,9 эВ. При энергии электронов, меньшей 4,9 эВ, их столкновения с атомами ртути могут быть только упругими (без изменения внутренней энергии атомов), и электроны достигают сетки с энергией, достаточной для преодоления тормозящей разности потенциалов между сеткой и анодом. Когда же ускоряющее напряжение $V$ становится равным $4,9 \mathrm{~B}$, электроны начинают испытывать вблизи сетки неупругие столкновения, отдавая атомам ртути всю энергию, и уже не смогут преодолеть тормозящую разность потенциалов в пространстве за сеткой. Значит, на анод $A$ могут попасть только те электроны, которые не испытали неупругого столкновения. Поэтому, начиная с ускоряющего напряжения $4,9 \mathrm{~B}$, анодный ток $I$ будет уменьшаться. При дальнейшем росте ускоряющего напряжения достаточное число электронов после неупругого столкновения успевает приобрести энергию, необходимую для преодоления тормозящего поля за сеткой. Начинается новое возрастание силы тока $I$. Когда ускоряющее напряжение увеличится до $9,8 \mathrm{~B}$, электроны после одного неупругого столкновения достигают сетки с энергией 4,9 эВ, достаточной для второго неупругого столкновения. При втором неупругом столкновении электроны теряют всю свою энергию и не достигают анода. Поэтому анодный ток $I$ начинает опять уменьшаться (второй максимум на рис. 2.6). Аналогично объясняются и последующие максимумы. Из результатов опытов следует, что разница внутренних энергий основного состояния атома ртути и ближайшего возбужденного состояния равна 4,9 эВ, что и доказывает дискретность внутренней энергии атома. Аналогичные опыты были проведены в дальнейшем с атомами других газов. И для них были получены характерные разности потенциалов, их называют резонансными потенциалами или первыми потенциалами возбуждения. Резонансный потенциал соответствует переходу атома с основного состояния в ближайшее возбужденное. Для обнаружения более высоких возбужденных состояний была использована более совершенная методика, однако принцип исследования оставался тем же. Итак, все опыты такого рода приводят к заключению, что состояния атомов изменяются лишь дискретно. Опыты Франка и Герца подтверждают также и второй постулат Бора — правило частот. Оказывается, что при достижении ускоряющего напряжения 4,9 В пары ртути начинают испускать ультрафиолетовое излучение с длиной волны 253,7 нм. Это излучение связано с переходом атомов ртути из первого возбужденного состояния в основное. Действительно, из условия (2.17) следует, что Этот результат хорошо согласуется с предыдущими измерениями.
|
1 |
Оглавление
|