Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Гипотеза спина. Тонкая структура спектральных линий, т. е. их расщепление, как было сказано в конце предыдущего параграфа, является следствием расщепления самих энергетических уровней. Это был первый экспериментальный факт, побудивший Гаудсмита и Уленбека (1925) выдвинуть гипотезу о наличии у электрона собственного момента, названного спином. В дальнейшем эта гипотеза была подтверждена и рядом других весьма убедительных экспериментальных фактов. Гипотеза спина сразу открыла возможность простого объяснения большого числа экспериментальных фактов, некоторые из которых мы рассмотрим далее. Спин — существенно квантовая величина, не имеющая классического аналога. Он ничего общего не имеет с представлением о вращающейся частице, как первоначально предполагали (отсюда и название). Спин характеризует внутреннее свойство электрона подобно массе и заряду. Выяснилось, что спин является свойством одновременно квантовым и релятивистским*. В отличие от орбитального момента, спин всегда сохраняется (как внутреннее свойство). Спин электрона определяется по общим законам квантовой теории. Аналогично орбитальному моменту, определенные значения в одном и том же состоянии могут иметь квадрат спина где Значение Отметим, что спином обладает подавляющее большинство частиц. Например, у протона и нейтрона Поскольку спин электрона Полный момент импульса электрона. С механическими моментами (орбитальным и спиновым) связаны магнитные моменты. В результате их взаимодействия происходит сложение моментов — возникает полный момент импульса электрона. Символически это записывают так: Правила сложения угловых моментов в квантовой теории не зависят от того, являются ли моменты орбитальными или спиновыми. Поэтому полный момент электрона Таким образом, квантовое число В связи со знаками Возможные проекции момента (6.26) на ось Если же Таблица 6.3 В дальнейшем на эти формулы мы будем неоднократно ссылаться. Тонкая структура. Рассмотрим на примере атома лития, как с помощью спина можно объяснить дублетную структуру линий спектра. Вследствие того, что момент атомного остова равен нулю (см. стр. 142), момент атома лития равен моменту внешнего (валентного) электрона. Момент же этого электрона равен сумме орбитального момента и спинового. Полный момент данного электрона согласно (6.30) определяется квантовым числом где Мы уже знаем, что моменты Таким образом, каждый уровень (терм) ряда Итак, каждый ряд уровней, кроме где Выпишем несколько первых рядов термов атома щелочных металлов: Для атомов щелочных металлов дублетное расщепление очень мало (по сравнению с расстояниями между «основными» уровнями). Величина тонкого расщепления уровней для легких атомов не более Правила отбора для Тонкая структура спектральных линий была обнаружена экспериментально и у атома водорода. Но расщепление уровней атома водорода оказалось слишком мало. и поэтому чаще всего им просто пренебрегают (за исключением очень тонких исследований). Закономерности тонкой структуры. Поясним происхождение тонкой структуры спектральных линий, например, лития, в трех случаях. Pиc. 6.6 Таким образом, тонкая структура уровней и спектральных линий атомов щелочных металлов обусловлены спином электрона, или, что то же, спин-орбитальным взаимодействием. В заключение рассмотрим пример, с решением которого нередко возникают затруднения.
|
1 |
Оглавление
|