Главная > Цифровая связь
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

5.2.2. Вероятность ошибки для M-позиционных ортогональных сигналов

Для ортогональных сигналов равной энергии оптимальный детектор выберет сигнал, который приводит к наибольшей корреляции между принимаемым вектором  и каждым из  возможных к передаче сигнальных векторов  т.е.

       (5.2.12)

Чтобы рассчитать вероятность ошибки, предположим, что передаётся сигнал . Тогда принимаемый сигнальный вектор

                                 (5.2.13)

где  - взаимно независимые случайные гауссовские величины с нулевыми средними и дисперсией . В этом случае выходы набора корреляторов равны

                                           (5.2.14)

Заметим, что скалярный множитель  можно исключить путём деления всех выходов на . Тогда с учётом нормирования ФПВ сигнала на выходе первого коррелятора  равна

                   (5.2.15)

а ФПВ сигналов на выходах остальных  корреляторов равны

   (5.2.16)

Математически удобно сначала найти вероятность того, что детектор осуществляет правильный приём. Это вероятность того, что  больше, чем каждый из  выходов корреляторов . Вероятность этого события определяется так:

   (5.2.17)

где  - совместная вероятность того, что  меньше, чем  при данном . Затем эта совместная вероятность усредняется по всем . Так как  статистически независимы, то совместная вероятность определяется произведением  собственных вероятностей вида

     (5.2.18)

Эти вероятности одинаковы для , и, следовательно, совместная вероятность приводит к (5.2.18) в степени . Таким образом, вероятность правильного приёма

  (5.2.19)

а вероятность ошибки (-битового) символа равна

                                                                         (5.2.20)

где

      (5.2.21)

Такое же выражение для вероятности ошибки получим при передаче любого из других  сигналов. Поскольку все сигналы равновероятны, то выражение  по формуле (5.2.21) определяет и среднюю вероятность ошибки. Расчёт по этой формуле можно выполнить численно.

Для сравнения качества различных методов цифровой модуляции желательно иметь зависимость вероятности ошибки от ОСШ на бит  вместо ОСШ на символ  При  каждый символ передаёт  бит информации, и, следовательно,  Таким образом, (5.2.21) можно выразить через  подстановкой .

Иногда также желательно выразить вероятность ошибки символа через эквивалентную вероятность ошибки на бит.

Для равновероятных ортогональных сигналов все вероятности ошибки на символ равновероятны, и они возникают с вероятностью

                                                                  (5.2.22)

Далее имеется  возможностей путей, при которых из  переданных битов  приняты с ошибкой. Следовательно, среднее число ошибочных битов на -битовый символ равно

                                     (5.2.23)

а средняя вероятность ошибки на бит точно определяется делением (5.2.23) на -число бит на символ. Таким образом,

                                  (5.2.24)

Кривые зависимости вероятности ошибки на бит от ОСШ на бит  даны на рис. 5.2.5 для .

Рис. 5.2.5. Вероятность ошибки на бит для когерентного детектирования ортогональных сигналов

Эти кривые показывают, что с увеличением числа сигналов  можно уменьшить ОСШ на бит, требуемое для заданной вероятности ошибки на бит. Например, чтобы достичь для  требуется ОСШ на бит немного больше, чем 12 дБ, но если увеличить до 64 сигналов ( бит/символ), требуемое ОСШ на бит станет равным примерно 6 дБ. Таким образом, реализуется экономия выше 6 дБ (сокращение в 4 раза) в передаваемой мощности (или энергии) для достижения  при увеличении числа сигналов  от 2 до 64. Каково минимальное значение  для достижения произвольной малой вероятности ошибки при ? На этот вопрос ответим ниже.

Объединённая граница для вероятности ошибки. Рассмотрим влияние роста  на вероятность ошибки для ортогональных сигналов. Чтобы облегчить математический анализ, сначала найдём верхнюю границу для вероятности ошибки на символ, которая намного проще, чем точная формула (5.2.21).

Напомним, что вероятность ошибки для двоичных ортогональных сигналов даётся формулой (5.2.11). Теперь будем рассматривать детектор для  ортогональных сигналов как такой, который выполняет  двоичных решений между выходом коррелятора  который содержит сигнал, и остальными  выходами корреляторов  .

Вероятность ошибки ограничена сверху объединённой границей для вероятности  событий. Это означает, что если  представляет событие, что  для , тогда . Следовательно,

  (5.2.25)

Эту границу можно упростить посредством верхней границы для . Имеем

                                               (5.2.26)

Таким образом,

                                 (5.2.27)

При , что эквивалентно , вероятность ошибки экспоненциально стремится к нулю при условии, что  больше, чем  т.е.

                          (5.2.28)

Простая верхняя граница для вероятности ошибки, определяемая (5.2.27). подразумевает, что когда ОСШ на бит больше, чем 1,42 дБ. то мы можем достичь произвольно малую вероятность ошибки . Однако эта объединённая граница не является очень плотной границей при достаточно низком , что объясняется тем фактом, что верхняя граница для -функции в (5.2.26) является неточной. Действительно, посредством более тщательного исследования границ в гл. 7 показано, что верхняя граница (5.2.27) достаточно плотная при . Для  плотная верхняя граница для  определяется так:

                                               (5.2.29)

Следовательно,  при  при условии, что

                            (5.2.30)

Таким образом, 1,6 ДБ – это минимальное ОСШ на бит, требуемое для достижения произвольной сколь угодно малой вероятности ошибки в пределе, когда . Это минимальное значение ОСШ на бит (-1,6 дБ) названо пределом Шеннона для канала с аддитивным белым гауссовским шумом.

 

1
Оглавление
email@scask.ru