Главная > Теоретическая физика, Т. I. Механика
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 23. Колебания систем со многими степенями свободы

Теория свободных колебаний систем с несколькими степенями свободы строится аналогично тому, как были рассмотрены в § 21 одномерные колебания.

Пусть потенциальная энергия системы U как функция обобщенных координат , имеет минимум при . Вводя малые смещения

и разлагая по ним U с точностью до членов второго порядка, получим потенциальную энергию в виде положительно определенной квадратичной формы

где мы снова отсчитываем потенциальную энергию от ее минимального значения. Поскольку коэффициенты и входят в (23,2) умноженными на одну и ту же величину , то ясно, что их можно всегда считать симметричными по своим индексам

В кинетической же энергии, которая имеет в общем случае вид

(см. (5,5)), полагаем в коэффициентах и, обозначая постоянные посредством , получаем ее в виде положительно определенной квадратичной формы

Коэффициенты тоже можно всегда считать симметричными по индексам

Таким образом, лагранжева функция системы, совершающей свободные малые колебания:

Составим теперь уравнения движения. Для определения входящих в них производных напишем полный дифференциал функции Лагранжа

Поскольку величина суммы не зависит, разумеется, от обозначения индексов суммирования, меняем в первом и третьем членах в скобках i на k, a k на i; учитывая при этом симметричность коэффициентов , получим:

Отсюда видно, что

Поэтому уравнения Лагранжа

(23,5)

Они представляют собой систему линейных однородных дифференциальных уравнений с постоянными коэффициентами.

По общим правилам решения таких уравнений ищем s неизвестных функций в виде

где — некоторые, пока неопределенные, постоянные. Подставляя (23,6) в систему (23,5), получаем по сокращении на систему линейных однородных алгебраических уравнений, которым должны удовлетворять постоянные :

Для того чтобы эта система имела отличные от нуля решения, должен обращаться в нуль ее определитель

Уравнение (23.8) - так называемое характеристическое уравнение представляет собой уравнение степени s относительно Оно имеет в общем случае s различных вещественных положительных корней (в частных случаях некоторые из этих корней могут совпадать). Определенные таким образом величины называются собственными частотами системы.

Вещественность и положительность корней уравнения (23,8) заранее очевидны уже из физических соображений. Действительно, наличие у со мнимой части означало бы наличие во временной зависимости координат (23,6) (а с ними и скоростей ) экспоненциально убывающего или экспоненциально возрастающего множителя. Но наличие такого множителя в данном случае недопустимо, так как оно привело бы к изменению со временем полной энергии системы в противоречии с законом ее сохранения.

В том же самом можно убедиться и чисто математическим путем. Умножив уравнение (23,7) на и просуммировав затем по получим:

откуда

Квадратичные формы в числителе и знаменателе этого выражения вещественны в силу вещественности и симметричности коэффициентов и , действительно,

Они также существенно положительны, а потому положительно

После того как частоты найдены, подставляя каждое из них в уравнения (23,7), можно найти соответствующие значения коэффициентов Если все корни характеристического уравнения различны, то, как известно, коэффициенты А пропорциональны минорам определителя (23,8), в котором и заменена соответствующим значением обозначим эти миноры через До. Частное решение системы дифференциальных уравнений (23,5) имеет, следовательно, вид

где — произвольная (комплексная) постоянная.

Общее же решение даетбя суммой всех s частных решений. Переходя к вещественной части, напишем его в виде

где мы ввели обозначение

(23,10)

Таким образом, изменение каждой из координат системы со временем представляет собрй наложение s простых периодических колебаний с произвольными амплитудами и фазами, но имеющих вполне определенные частоты.

Естественно возникает вопрос, нельзя ли выбрать обобщенные координаты таким образом, чтобы каждая из них совершала только одно простое колебание? Самая форма общего интеграла (23,9) указывает путь к решению этой задачи.

В самом деле, рассматривая s соотношений (23,9) как систему уравнений с s неизвестными величинами мы можем, разрешив эту систему, выразить величины через координаты . Следовательно, величины можно рассматривать как новые обобщенные координаты. Эти координаты называют нормальными (или главными), а совершаемые ими простые периодические колебания — нормальными колебаниями системы.

Нормальные координаты удовлетворяют, как это явствует из их определения, уравнениям

(23,11)

Это значит, что в нормальных координатах уравнения движения распадаются на s независимых друг от друга уравнений. Ускорение каждой нормальной координаты зависит только от значения этой же координаты, и для полного определения ее временной зависимости надо знать начальные значения только ее же самой и соответствующей ей скорости. Другими словами, нормальные колебания системы полностью независимы.

Из сказанного очевидно, что функция Лагранжа, выраженная через нормальные координаты, распадается на сумму выражений, каждое из которых соответствует одномерному колебанию с одной из частот т. е. имеет вид

(23,12)

где — положительные постоянные. С математической точки зрения это означает, что преобразованием (23,9) обе квадратичные формы — кинетическая энергия (23,3) и потенциальная (23,2) одновременно приводятся к диагональному виду.

Обычно нормальные координаты выбирают таким образом, чтобы коэффициенты при квадратах скоростей в функции Лагранжа были равны 1/2. Для этого достаточно определить нормальные координаты (обозначим их теперь ) равенствами

Тогда

Все изложенное мало меняется в случае, когда среди корней характеристического уравнения имеются кратные корни. Общий вид (23,9), (23,10) интеграла уравнений движений остается таким же (с тем же числом s членов) с той лишь разницей, что соответствующие кратным частотам коэффициенты уже не являются минорами определителя, которые, как известно, обращаются в этом случае в нуль.

Каждой кратной (или, как говорят, вырожденной) частоте отвечает столько различных нормальных координат, какова степень кратности, но выбор этих нормальных координат не однозначен. Поскольку в кинетическую и потенциальную энергии нормальные координаты (с одинаковым ) входят в виде одинаково преобразующихся сумм то их можно подвергнуть любому линейному преобразованию, оставляющему инвариантной сумму квадратов.

Весьма просто нахождение нормальных координат для трехмерных колебаний одной материальной точки, находящейся в постоянном внешнем поле. Помещая начало декартовой системы координат в точку минимума потенциальной энергии мы получим последнюю в виде квадратичной формы переменных х, у, z, а кинетическая энергия

(m — масса частиц) не зависит от выбора направления координатных осей. Поэтому соответствующим поворотом осей надо только привести к диагональному виду потенциальную энергию. Тогда

и колебания вдоль осей х, у, z являются главными с частотами

В частном случае центрально-симметричного поля эти три частоты совпадают (см. задачу 3).

Использование нормальных координат дает возможность привести задачу о вынужденных колебаниях системы с несколькими степенями свободы к задачам об одномерных вынужденных колебаниях. Функция Лагранжа системы с учетом действующих на нее переменных внешних сил имеет вид

(23,15)

где лагранжева функция свободных колебаний.

Вводя вместо координат нормальные координаты, получим:

(23,16)

где введено обозначение

Соответственно уравнения движения

(23.17)

будут содержать лишь по одной неизвестной функции .

Задачи

1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа

(две одинаковые одномерные системы с собственной частотой связанные взаимодействием — ).

Решение. Уравнения движения

Подстановка (23,6) дает:

Характеристическое уравнение откуда

При уравнения (1) дают а при Поэтому

(коэффициенты соответствуют указанной в тексте нормировке нормальных координат).

При (слабая связь) имеем:

Изменение х и у представляет собой в этом случае наложение двух колебаний с близкими частотами, т. е. имеет характер биений с частотой (см. § 22). При этом в момент, когда амплитуда координаты х проходит через максимум, амплитуда у проходит через минимум и наоборот.

2. Определить малые колебания двойного плоского маятника (рис. 1).

Решение. Для малых колебаний найденная в задаче 1 § 5 функция Лагранжа принимает вид

Уравнения движения:

После подстановки (23,6):

Корни характеристического уравнения:

При частоты стремятся к пределам и соответствующим независимым колебаниям двух маятников.

3. Найти траекторию движения частицы в центральном поле (так называемый пространственный осциллятор).

Решение. Как и во всяком центральном поле, движение происходит в одной плоскости, которую выбираем в качестве плоскости х, у. Изменение каждой из координат х, у — простое колебание с одинаковыми частотами :

или

где введены обозначения Определив отсюда и составив сумму их квадратов, получим уравнение траектории

Это — эллипс с центром в начале координат). При или я траектория вырождается в отрезки прямой.

Categories

1
Оглавление
email@scask.ru