Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Принцип относительности ГалилеяДля изучения механических явлений надо выбрать ту или иную систему отсчета. В различных системах отсчета законы движения имеют, вообще говоря, различный вид. Если взять произвольную систему отсчета, то может оказаться, что законы даже совсем простых явлений будут выглядеть в ней весьма сложно. Естественно, возникает задача отыскания такой системы отсчета, в которой законы механики выглядели бы наиболее просто. По отношению к произвольной системе отсчета пространство является неоднородным и неизотропным. Это значит, что если какое-либо тело не взаимодействует ни с какими другими телами, то, тем не менее, его различные положения в пространстве и его различные ориентации в механическом отношении не эквивалентны. То же самое относится в общем случае и ко времени, которое будет неоднородным, т. е. его различные моменты неэквивалентными. Усложнение, которое вносили бы такие свойства пространства и времени в описание механических явлений, — очевидно. Так, например, свободное (т. е. не подвергающееся внешним воздействиям) тело не могло бы покоиться: если скорость тела в некоторый момент времени и равна нулю, то уже в следующий момент тело начало бы двигаться в некотором направлении. Оказывается, однако, что всегда можно найти такую систему отсчета, по отношению к которой пространство является однородным и изотропным, а время — однородным. Такая система называется инерциальной. В ней, в частности, свободное тело, покоящееся в некоторый момент времени, остается в покое неограниченно долго. Мы можем теперь сразу сделать некоторые заключения о виде функции Лагранжа свободно движущейся материальной точки в инерциальной системе отсчета. Однородность пространства и времени означает, что эта функция не может содержать явным образом ни радиус-вектора точки, ни времени t, т. е. L является функцией лишь от скорости v. В силу же изотропии пространства функция Лагранжа не может зависеть также и от направления вектора v, так что является функцией лишь от его абсолютной величины, т. е. от квадрата
Ввиду независимости функции Лагранжа от r имеем и потому уравнения Лагранжа имеют вид
откуда . Но поскольку является функцией только от скорости, то отсюда следует, что и (3,2) Таким образом, мы приходим к выводу, что в инерциальной системе отсчета всякое свободное движение происходит с постоянной по величине и направлению скоростью. Это утверждение составляет содержание так называемого закона инерции. Если наряду с имеющейся у нас инерциальной системой отсчета мы введем другую систему; движущуюся относительно первой прямолинейно и равномерно, то законы свободного движения по отношению к этой новой системе будут теми же, что и по отношению к первоначальной: свободное движение снова будет происходить с постоянной скоростью. Опыт показывает, однако, что не только законы свободного движения будут одинаковыми в этих системах, но что они будут и во всех других механических отношениях полностью эквивалентными. Таким образом, существует не одна, а бесконечное множество инерциальных систем отсчета, движущихся друг относительно друга прямолинейно и равномерно. Во всех этих системах свойства пространства и времени одинаковы и одинаковы все законы механики. Это утверждение составляет содержание так называемого принципа относительности Галилея — одного из важнейших принципов механики. Все сказанное достаточно ясно свидетельствует об исключительности свойств инерциальных систем отсчета, в силу которых именно эти системы должны, как правило, использоваться при изучении механических явлений. Везде в дальнейшем, где обратное не оговорено особо, мы будем рассматривать только инерциальные системы отсчета. Полная механическая эквивалентность всего бесчисленного множества таких систем показывает в то же время, что не существует никакой одной «абсолютной» системы отсчета, которую можно было бы предпочесть другим системам. Координаты одной и той же точки в двух различных системах отсчета К и К', из которых вторая движется относительно первой со скоростью V, связаны друг с другом соотношением
При этом подразумевается, что ход времени одинаков в обеих системах отсчета:
Предположение об абсолютности времени лежит в самой основе представлений классической механики. Формулы (3,3), (3,4) называют преобразованием Галилея. Принцип относительности Галилея можно сформулировать как требование инвариантности уравнений движения механики по отношению к этому преобразованию.
|
1 |
Оглавление
|