Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. Диффузия к круговому цилиндру в поступательном потокеРассмотрим плоскую задачу о стационарной диффузии при больших числах Пекле к поверхности кругового цилиндра, обтекаемого нормальным к его оси поступательным потоком при полном поглощении растворенного в потоке вещества на поверхности цилиндра и постоянной концентрации вдали от него. Эта задача является модельной в химической технологии для расчета массопереноса к реагирующим частицам удлиненной формы, но особенно широко она используется в механике аэрозолей при анализе процесса диффузионного осаждения аэрозолей на волокнах фильтра [105, 108]. Такая модель эффективно применяется также при исследовании ряда биологических процессов, например при оценке собирательной способности антенн самца бабочки тутового шелкопряда при улавливании молекул бомбикола — полового аттрактанта, испускаемого самкой, на очень больших (до километра) расстояниях [65, 180]. Безразмерное уравнение диффузии при наличии конвективного переноса вещества и граничные условия в полярной системе координат
Угол Рассмотрим сначала обтекание цилиндра при малых числах Рейнольдса
где
При малых
Перейдем, как обычно, в уравнении (6.1) к переменным Мизеса 0. В главном приближении до соотношений (6.5) и преобразований
получим следующее уравнение для концентрации в диффузионном пограничном слое (индекс
В переменных
это уравнение принимает вид
Граничные условия следуют из условия полного поглощения растворенного вещества на поверхности цилиндра (первое условие (6.2)), условия сращивания с решением
Задача (6.6), (6.7) совпадает с рассмотренной выше задачей (1.13) — (1.15), поэтому можно сразу записать ее автомодельное решение, выраженное через неполную гамма-функцию в виде (1.16). В исходных полярных координатах получим
(Фигурирующий здесь интеграл может быть выражен через эллиптические интегралы первого и второго рода.) Безразмерные локальный и интегральный потоки вещества на поверхность цилиндра, отнесенные к его длине, и число Шервуда определим по формулам
Используя соотношение (6.8), для локального диффузионного потока на поверхность цилиндра (за исключением окрестности задней критической точки) получим
Локальный диффузионный поток на поверхность цилиндра в окрестности задней критической точки, согласно вычислениям [160], с точностью до постоянного множителя определяется формулой (2.3). Как и следовало ожидать по аналогии с процессом массоцереноса к сфере, вклад окрестности задней критической точки в полный диффузионный поток на поверхность цилиндра несуществен, и им можно пренебречь, рассматривая разложение полного потока по малому параметру В главном приближении по
При вычислении использовано значение интеграла
Выражение (6.11) было получено в [67, 134]. Следующий член (порядка единицы) разложения вычислен в [100]. Приведем двучленное разложение числа Шервуда:
Массонеренос к цилиндру при больших числах Рейнольдса рассматривался в работе [115] на основании одной из моделей ламинарного пограничного слоя с отрывом при При безотрывном потенциальном обтекании цилиндра поступательным потоком идеальной жидкости в соответствии с известным решением Буссинеска
|
1 |
Оглавление
|