Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.6. Эквивалентные математические и кинетические моделиМатематически сходство динамического поведения различных систем, имеющих гистерезис квазистационарной характеристики, можно интерпретировать как простое следствие эквивалентности их математических моделей. Например, если для описания кинетики действия фермента
или реакцию
использовать уравнение вида (2.42), то математические модели этих реакций будут иметь тот же вид, что математическая модель (2.36) реакции (2.32). Если же фермент имеет олигомерную структуру и кинетика его действия описывается более сложным уравнением (2.54) или еще более сложным уравнением (1.102), то математические модели этих реакций, хотя и отличаются от модели (2.36) реакции (2.32) видом своих правых частей и количественными характеристиками взаимоотношений между переменными, все же остаются топологически эквивалентными более простой модели (2.36). Под топологической эквивалентностью здесь подразумевается одинаковое строение параметрических и, следовательно, фазовых портретов моделей. Очевидно, что усилия, затрачиваемые на анализ новой, еще не изученной биохимической системы, можно резко сократить, если доказать, что ее математическая модель эквивалентна более детально изученной модели. В таком случае все свойства более полно изученной модели автоматически распространяются на новую модель. Таким образом, наиболее детально изученная модель некоторого множества эквивалентных моделей может служить эталоном, с которым сравниваются другие менее изученные модели, принадлежащие этому множеству. Приведение данной модели к эталонной может быть осуществлено с помощью соответствующей замены переменных [72]. Так, например, математическую модель открытой реакции с продуктной активацией
имеющей в безразмерных переменных вид [80—84]
где
с помощью простой замены переменных
можно привести к эквивалентной форме
где
Новую переменную
в которой
Это уравнение описывает гиперболическую зависимость скорости от концентрации Из-за малости Простейшие из эквивалентных моделей целесообразно использовать для замещения более сложных при моделировании полиферментных систем. При этом подгонкой параметров легко добиться хорошего количественного совпадения между моделью-объектом и моделью-заместителем. В работе [85], например, показано, что феноменологическая модель (2.60) с высокой точностью замещает существенно более сложную модель реакции (2.59), катализируемую олигомером [86]. В дальнейшем кинетические модели, описываемые топологически эквивалентными математическими моделями, будем называть эквивалентными. Эквивалентными будем называть и регуляторные связи, если они принадлежат таким кинетическим моделям. Так, например, только что было показано, что кинетические модели (2.59) и (2.65) описываются топологически эквивалентными моделями. Следовательно, эти кинетические модели и их регуляторные связи — субстратное угнетение в модели (2.65) и продуктная активация в модели (2.59) — также эквивалентны.
|
1 |
Оглавление
|