Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.3. Простая модель стехиометрической структуры энергетического метаболизмаГликолиз и окислительное фосфорилирование имеют автокаталитическую, точнее рефлексивно-каталитическую, стехиометрическую структуру: их продукт АТФ участвует в «активации» субстратов окисления, используемых для фосфорилирования АДФ. В гликолизе активация заключается в фосфорилировании гексоз, в окислительном фосфорилировании — в ацилировании кофермента А (липолиз) или карбоксилировании пирувата. Энергозависимый транспорт субстратов окисления через клеточную или митохондриальную мембраны также можно рассматривать как один из этапов активации. Совокупность реакций, участвующих в энергетическом метаболизме, можно упрощенно представить кинетической моделью [141—143], показанной на схеме (3.1)
В этой модели
и что существует линейный интеграл
Учитывая допущения (3.2), (3.3) и считая, что реакции протекают в среде идеального перемешивания, термо- и рН-статирования, можно получить следующую безразмерную форму математической модели энергетического метаболизма:
где
В модели (3.4) использованы безразмерные переменные и параметры:
Если значения
в которой
— выходная характеристика и
— стехиометрическая эффективность источника энергии, состоящего из реакций первой — четвертой схемы (3.1). График (кликните для просмотра скана) выходной характеристики при фиксированном значении а показан на рис. 23, а. Из рисунка видно, что с возрастанием
и граница нейтральности
построены при помощи параметрического задания в виде
В областях 1 и 3 параметрического портрета все стационарные состояния неустойчивы и модель (3.7) имеет устойчивый предельный цикл (см. рис. 24, а). При исследовании модели энергетического метаболизма были использованы методы, рассмотренные в главе 2 для случая открытых ферментативных реакций. Такие методы, как графическое исследование стационарных состояний, анализ их устойчивости и построение параметрического портрета, оказываются полезными для анализа самых различных процессов, протекающих в проточных условиях. Важнейшей количественной характеристикой любого энергетического метаболизма является его нагрузочная характеристика [144, 147]. Под нагрузочной характеристикой подразумевается зависимость стационарной концентрации АТФ от активности
Рис. 25. Параметрический портрет модели (3.7) энергетического метаболизма (3.1), построенный в плоскости параметров источника
Рис. 26. Семейство стационарных нагрузочных характеристик энергетического метаболизма (3.1), полученных с помощью модели (3.7) при различных активностях утечки обобщенной АТФазы (нагрузки), представляющей суммарную активность всех биохимических процессов, потребляющих АТФ. Семейство таких нагрузочных характеристик, построенных с помощью модели (3.7) для энергетического метаболизма (3.1), приведено на рис. 26. На этом рисунке показана зависимость стационарной концентрации Другой заметной особенностью нагрузочной характеристики является ее гистерезис. Этот гистерезис приводит к тому, что при перегрузке (т. е. при Модель энергетического метаболизма (3.7) является обобщением различных модификаций модели Лотки [166—167]. При Нетрудно заметить, что двойной предельный переход
Здесь штрих-пунктирной стрелкой обозначено автокаталитическое участие АТФ в собственном синтезе. Подобное свертывание сложной полиферментной системы к одной эквивалентной реакции открывает большие возможности для упрощения анализа клеточного метаболизма. При выводе модели (3.7) использовали простейшие гипотезы относительно скоростей
В работе [144] была проанализирована модель стехиометрической структуры энергетического метаболизма, учитывающая как насыщение всех реакций субстратами, так и реакцию (3.14). Исследование этой более полной модели показало, что ее нагрузочная характеристика также имеет четко выраженное плато и гистерезис. При этом гистерезис нагрузочной характеристики может возникать по независимым причинам: 1) из-за дополнительной нелинейности, вносимой в модель реакцией (3.14), 2) из-за конкуренции между генераторной ступенью и утечкой за интермедиат 12 и 3) из-за насыщения нагрузки аденозинтрифосфатом, как и в модели (3.7). В работах [145—154] было продолжено исследование различных вариантов кинетической модели (3.1) и было показано, что во всех ее вариантах неизменно обнаруживается плато нагрузочной характеристики и что в энергетическом метаболизме имеется множество различных стехиометрических взаимодействий, порождающих гистерезис этой характеристики. В некоторых вариантах модели (3.1) была учтена зависимость скорости генераторной ступени от концентрации неорганического фосфата [145—149]. В таких вариантах плато нагрузочной характеристики в широком диапазоне нагрузок имеет положительный наклон, т. е. АТФ растет с увеличением нагрузки. Таким образом, участие фосфата в работе энергетического метаболизма в качестве стехиометрического регулятора приводит к своеобразной перекомпенсации нагрузки: чем больше активность обобщенной АТФазы, тем больше неорганического фосфата и, следовательно, тем интенсивнее работает генераторная ступень. В итоге, в некотором диапазоне нагрузок концентрация АТФ не только не уменьшается, но даже растет с увеличением нагрузки. В публикациях [152—154] были проанализированы варианты модели (3.1), детально описывающие рециркуляцию интермедиатов, существующую в цикле Кребса. Анализ этих вариантов модели (3.1) показал, что нагрузочная характеристика аэробного энергетического метаболизма в условиях интенсивного протока субстратов через цикл Кребса также имеет плато и гистерезис. Таким образом, из анализа стехиометрической структуры энергетического метаболизма, проведенного здесь с помощью модели (3.1), а также с помощью различных обобщений этой модели [141 — 154], следует, что плато и гистерезис нагрузочной характеристики являются фундаментальными свойствами любого энергетического метаболизма, имеющего автокаталитическую природу.
|
1 |
Оглавление
|