Главная > Математическая биофизика клетки
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.2. Ферменты — белковые катализаторы и регуляторы

Ферменты [1-9] представляют собой высокоэффективные белковые катализаторы, ускоряющие течение биохимических реакций в раз по сравнению со скоростью тех же реакций, идущих без ферментов при прочих равных условиях [10]. Молекулы ферментов имеют обычно глобулярное строение [6, с. 65] и молекулярный вес от до [11]. Непосредственно в катализе биохимических реакций принимает участие лишь очень небольшая часть молекулы фермента, называемая активным, или каталитическим, центром. Активным центром называется каталитически активный участок молекулы фермента, образованный специфическим взаимным пространственным расположением нескольких боковых групп остатков аминокислот полипептидных цепей (или одной цепи) [6, с. 62] и небольших молекул, ковалентно связанных с полипептидными цепями (или с одной цепью) молекулы фермента.

Любое ферментативное превращение начинается со связывания молекул субстратов с несколькими группами активного центра и завершается разрывом связей, удерживающих молекулы продуктов с активным центром. Между двумя этими событиями фермент находится в форме лабильного активного фермент-субстратного комплекса, который, в отличие от активированного комплекса элементарной химической реакции [10], представляет собой очень неустойчивые химические соединения субстратов реакции с ферментом.

Гипотеза об образовании лабильного фермент-субстратного комплекса в ходе ферментативной реакции была впервые высказана в 1902 г. Брауном [12] и Анри [13].

Пытаясь дать количественное толкование явлению насыщения амилазных реакций субстратами, Анри [14] в 1904 г. рассмотрел кинетическую модель

в которой полисахарид, продукты его гидролиза, амилаза, фермент-субстратный комплекс. Для упрощения анализа модели (1.1) Анри допустил, что реакция образования фермент-субстратного комплекса

находится в равновесии, определяемом константой диссоциации комплекса Это позволило ему вывести уравнение начальной скорости реакции (1.1) в следующем виде:

Уравнение (1.3) описывает достижение максимальной скорости при К такому же уравнению (1.3) и при тех же допущениях пришли в 1913 г. Михаэлис и Ментен [15], обобщив свои наблюдения над кинетикой действия фруктофураноэидазы Работа [15] приобрела широкую известность — уравнение (1.3) стали называть уравнением Михаэлиса — Ментен, а комплекс комплексом Михаэлиса.

В 1925 г. Ериггс и Холдейн [16] рассмотрели кинетическую модель (1.1) при более общем допущении. Они приняли, что в реакции (1.1) выполняется условие в котором Считая, что из-за малости огношения скорость изменения концентрации фермент-субстратного комплекса должна быть много больше скорости изменения концентрации субстрата Бриггс и Холдейн приняли, что в реакции (1.1) быстро устанавливается квазистационарное состояние, в котором Это допущение привело их к следующему выражению для квазистационарной начальной скорости реакции (1.1):

где константа Михаэлиса, а максимальная скорость. имеет размерность концентрации. Этот параметр может быть определен, как концентрация: при которой

Гипотеза о существовании фермент-субстратного комплекса долгое время не находила прямого экспериментального подтверждения. Малые концентрации, в которых образуется комплекс в ходе ферментативного катализа и нестойкость комплекса, затрудняли его экспериментальное обнаружение. В 1943 г. Чансу [17] удалось спектрофотометрически продемонстрировать образование фермент-субстратного комплекса и проследить за изменением его концентрации в ходе реакции, катализируемой гемосодержащим [6, с. 437] ферментом пероксидазой Он исследовал поведение математической модели этой реакции на механическом дифференциальном анализаторе и показал, что теория этой реакции, основанная на допущении существования фермент-субстратного комплекса и законе действующих масс, способна с высокой точностью описать динамику пероксидазной реакции, наблюдавшуюся в эксперименте [17]. В 1962 г. Яги и Озава [18, 19] получили

стабильные в анаэробных условиях кристаллы фермент-субстратного комплекса оксидазы -аминокислот В настоящее время существует множество различных экспериментальных доказательств реальности существования фермент-субстратных комплексов в ферментативных реакциях [4, с. 177; 6, с. 203].

В 1930 г. Холдейн [20], распространив теоретические представления о фермент-субстратном комплексе [12—15] на случай двухсубстратных и обратимых реакций, постулировал существование различных фермент-субстратных, фермент-продуктных и фермент-ингибиторных промежуточных комплексов. Так, для объяснения механизма двухсубстратной реакции

Холдейну пришлось ввести предположение о существовании трех различных фермент-субстратных комплексов: двух бинарных и одного тройного комплекса образующихся в реакциях

Для объяснения механизма субстратного угнетения Холдейн [20] предложил кинетическую модель

согласно которой активный фермент-субстратный комплекс присоединяя к себе избыточную молекулу субстрата превращается в пассивный фермент-субстратный комплекс не способный распадаться с образованием продукта Используя метод квазистационарных концентраций, Холдейн получил следующее выражение для квазистационарной начальной скорости реакции описываемой кинетической моделью (1.7):

где — максимальная скорость реакции, достигаемая только при константа Михаэлиса, константа субстратного угнетения, полная концентрация фермента.

Явление субстратного угнетения, теоретически проанализированное Холдейном с помощью модели (1.8), было впервые

обнаружено в 1924 г. Диксоном и Терлоу [21] при исследовании кинетики действия ксантиноксидазы Этот фермент сильно угнетался высокими концентрациями субстрата (ксантина или гипоксантина).

После работы Холдейна [20] стало ясно, что для объяснения механизмов сложных реакций — реакций с большим числом реактантов — следует допустить, что в ходе таких реакций образуется не один, а множество различных фермент-субстратных комплексов. И действительно, по данным В. И. Иванова и М. Я. Карпейского [22], в реакции трансаминирования, катализируемой аспартатами-нотрансферазой ферментом, механизм действия активного центра которого изучен в настоящее время весьма детально, образуется более десяти различных форм фермент-субстратных комплексом.

Следует заметить, что экспериментальное обнаружение и идентификация всех теоретически мыслимых форм ферментных комплексов в каждой изучаемой реакции представляют собой нерешенную до сих пор проблему. Поэтому число и порядок взаимопревращений ферментных комплексов в подавляющем большинстве известных в настоящее время ферментативных реакций неясны.

Специфическое расположение атомов и атомных группировок, взаимодействующих в активном центре с молекулами реактантов, обеспечивается определенной пространственной укладкой полипептидных цепей фермента, характерной для данного фермента и называемой конформацией фермента [6, с. 65]. Изменения химического состава и физических характеристик среды, окружающей молекулу фермента, могут вызывать конформационные изменения — изменения взаимного расположения атомов и групп атомов в молекуле фермента. Эти конформационные изменения часто сопровождаются деформацией структуры активного центра, следствием чего может быть существенное изменение его активности и даже специфичности по отношению к реагентам.

Вещества, вызывающие изменения активности и (или) специфичности каталитических центров ферментов, называются модификаторами, регуляторами или модуляторами. Природные модификаторы ферментов, обладающие высокой специфичностью и эффективностью воздействия на фермент, называют (также регуляторами или эффекторами ферментов. Модификаторы, если они не являются участниками катализируемой ферментом реакции, в реакции не расходуются.

Различают два класса модификаторов — активаторы и ингибиторы. Молекулы активаторов, присоединяясь к ферменту, вызывают увеличение скорости катализируемой ферментом реакции или сродства фермента к субстрату, а молекулы ингибиторов — уменьшение скорости или этого сродства.

Молекулы модификаторов могут связываться как в активном центре фермента, так и в участках молекулы фермента, находящихся на значительном удалении от активного центра. Основной причиной того, что модификатор связывается в активном центре, является структурное сходство (иначе стерическое соответствие) между молекулой модификатора и субстрата. Поэтому модификаторы, присоединяющиеся к активному центру фермента, называются изостерическими.

В противоположность изостерическим модификаторам модификаторы, молекулы которых присоединяются к ферменту в участке, отличном от активного центра, называются аллостерическими модификаторами [23, 24]; место связывания такого модификатора называется аллостерическим, или регуляторным, центром, а фермент, имеющий аллостерический центр — аллостерическим, или регуляторным, ферментом.

Очевидно, что присоединение модификатора к аллостерическому центру может вызвать изменение активности и специфичности каталитического центра лишь путем изменения конформации фермента. Это допущение и лежит в основе теории механизма действия аллостерических ферментов, предложенной в 1965 г. Моно, Уайменом и Шанжё [25].

Регуляторные ферменты выполняют разнообразные нехимические функции в системах клеточной авторегуляции. Авторегуляцией [26, 27] называется процесс закономерного изменения или поддержания в заданных пределах определенных биологических величин, таких, как концентрации, скорости синтеза и распада различных клеточных веществ, активности ферментов и генов, рН, осмотическое давление, мембранная проницаемость, трансмембранная разность электрических потенциалов и т. д. Типичным механизмом биохимической авторегуляции является механизм угнетения ферментов конечным продуктом, открытый в 1954 г. Новиком и Сциллардом [28] в форме угнетения триптофаном одного из ферментов, участвующих в синтезе предшественников триптофана. Подобные механизмы были обнаружены впоследствии практически во всех участках обмена бактериальных, растительных и животных клеток [23, 24, 29—34]. Основное назначение механизмов угнетения ферментов конечным продуктом — стабилизация концентраций важнейших промежуточных веществ клеточного обмена.

Молекулы ферментов могут иметь один или несколько активных центров и один или несколько регуляторных центров. Условимся называть ферменты, имеющие только один активный центр, одноцентровыми, а ферменты с несколькими активными центрами — многоцентровыми ферментами.

Участие в ферментативной реакции нескольких субстратов, продуктов и модификаторов неизбежно приводит к тому, что

уравнение, описывающее зависимость квазистадионарной скорости такой реакции от концентраций реактантов и модификаторов, оказывается очень сложным и непригодным для использования в моделях полиферментных систем. Учитывая это обстоятельство, при разработке математических моделей ферментативных реакций приходится сознательно идти на ряд упрощений, вводящих некоторую погрешность в математическое описание кинетики реакций. Эта погрешность в описании реакций есть неизбежная плата за возможность представления многостадийных полиферментных систем математическими моделями обозримой сложности. Насколько должна быть упрощена модель той или иной ферментативной реакции, можно решить лишь в процессе анализа модели всей полиферментной системы, когда становится ясным, какие из свойств реакции существенны для понимания свойств изучаемой полиферментной системы. Поэтому многие из выводимых в последующих разделах моделей ферментативных реакций приводятся с некоторой избыточной подробностью, от которой легко избавиться, внеся в них необходимые упрощения.

1
Оглавление
email@scask.ru