Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9.2. Математические основы объемной реконструкцииКлуг и Де Розье [6] предложили использовать обратное Фурье пространство для математического восстановления структуры, исследуемой в электронном микроскопе. В электронном микроскопе формируется изображение, которое при определенных условиях может рассматриваться как проекция трехмерной структуры на плоскость, т. е. как интеграл от функции, описывающей распределение плотности в объеме по одной из переменных, совпадающей с направлением просвечивания. Если распределение плотности в трехмерном объекте описывается функцией просвечивания, представляют собой двумерные проекции трехмерной структуры на плоскость. Причем распределение плотности в про екциях всякий раз пропорционально интегралу от трехмерной функции. Так, проекция а Если съемка проекции производится относительно фиксированной оси так, что все направления проектирования перпендикулярны к ней, или если сам объект имеет поворотную или винтовую ось симметрии, трехмерная задача сводится к двумерной. В этом случае для каждого из углов проектирования Очевидно, что для несимметричного объекта проекции, отличающиеся на угол
Для объектов с четными осями симметрии информативна лишь половина проекций, вторая половина повторяет первую, т. е.
(кликните для просмотра скана) В общем случае для объекта с поворотной осью симметрия
где Для объекта с винтовой осью симметрии
где
Рис. 104. Проекция двумерного сечения трехмерного объекта Таким образом, одна проекция симметричного объекта уже содержит информацию, необходимую для восстановления. Такая проекция в случае поворотной симметрии эквивалентна Для структур со спиральной симметрией прямое и обратное преобразования в цилиндрических координатах будут иметь вид:
где Поскольку исходной информацией является изменение почернения фотографической пластинки, эта непрерывная величина (степень приближения не учитывает зернистой структуры фотослоя) для расчетов должна быть представлена в цифровой форме. Таким образом, каждая из проекций в результате измерений представляется в виде дискретного набора величин а Котельникова, распространяемой на случай двумерного изображения с ограниченным спектром. Такое изображение полностью определяется
Число отсчетов, приходящихся на отрезок длиной
В принципе, возможна реконструкция трехмерной структуры по проекциям и без перехода в обратное пространство. Одно из решений состоит в том, что каждая из проекций в дискретном представлении может рассматриваться как сумма значений плотности в одном из узлов решетки, на которой ведется восстановление. Таким образом, могут быть составлены линейные уравнения вида
с числом неизвестных в каждом уравнении В реальном пространстве справедлив и другой метод трехмерной реконструкции, получивший название метода восстановления обратным проектированием или синтезом проектирующих функций [8]. Идеи метода иллюстрируется на рис. 105, где показано двумерное восстановление функции Поскольку фурье-преобразование представляет собой линейную операцию, то
где Левая часть уравнения (9.11) соответствует операции «обратного проектирования» плотностей проекции, как показано на рис. 105. Такая операция эквивалентна фурье-синтезу с использованием центральных сечений, причем каждое из сечений соответствует фурье-преобразованию одной из проекций [правая часть уравнения (9.11)]. Оператор
Рис. 105. Восстановление «обратным проектированием» Несложно показать, что результат синтеза представляется в виде
причем
Символ означает операцию свертки
Величина
Этот член появляется из-за того, что фурье-преобразования всех
где В этом и состоит ошибка, присущая этому методу. Чтобы увидеть, чем реконструируемая плотность
где Так как все бесселевы функции
где пространстве. Таким образом, плотность свертывается с
В пределе при бесконечном разрешении
Таким образом, даже при бесконечном числе проекций метод реконструкции обратным проектированием не будет восстанавливать истинной плотности Причина, по которой метод обратного проектирования не может дать действительной реконструкции, состоит в том, что функция Модификацию описанного выше способа с целью устранения присущих ему ошибок предложили Б. К. Вайнштейн (модифицированный синтез проектирующих функций [10]) и Рамачандран (метод свертки [11]). Суть модификации сводится к следующему. Если выборочную функцию изменить так, чтобы она меняла свое значение в соответствии с радиусом обратного пространства, то можно осуществить верпую реконструкцию, точность которой ограничена лишь тем, что используется конечное число проекций. Другими словами, все компоненты фурье-преобразования будут включены в реконструкцию с правильным весом, если используемая функция выборки будет иметь вид Согласно теореме о спектре свертки перемножение в обратном пространстве эквивалентно свертке в реальном пространстве. Поэтому реконструируемая плотность может быть восстановлена точно, если каждая из проекций предварительно свернута со стандартной функцией, а затем суммирование таких модифицированных проекций осуществляется так, как указывалось выше. Оценка точности восстановления будет зависеть от числа проекций, характера вычислительных операций (степени усреднения, вида интерполяции) и достоверности данных при экспериментальном определении проекций. Восстановление ведется на дискретной сетке, состоящей из
Оценить предельное разрешение можно и при переходе в обратное пространство.
Поскольку амплитуды пространственных частот, близких к граничной частоте, малы, то вклад их незначителен, поэтому предел разрешения, определяемый выражением (9.18), выглядит несколько заниженным. Вообще же оценки уравнений (9.17) и (9.18) достаточно близки. Естественно, что более точную оценку разрешения можно дать при известном характере спектра структуры. Следует сказать, что метод точного восстановления обратным проектированием (модифицированный синтез проектирующих функций) и метод свертки эквивалентны методу Клуга и Де Розье, который состоит в подсчете фурье-преобразования проекций и затем выполнении обратного преобразования Фурье — Бесселя для восстановления структуры. Если в первом методе модификация проекций осуществляется в реальном пространстве путем их свертки с преобразованием Фурье от функции выборки с весом, определяемым радиусом обратного пространства, то во втором случае это взвешивание производится автоматически в обратном пространстве. Оба метода имеют примерно те же ограничения и по разрешению. Однако метод Клуга и Де Розье требует большего времени для вычислений, так как необходимо выполнять два фурье-преобразования. Итак, мы установили, что для восстановления внутренней структуры объекта, просвечиваемого электронными или оптическими пучками, необходимо иметь набор проекций его структуры, снятой под разными углами (т. е. при съемке объект необходимо поворачивать). Исключение составляют объекты, обладающие симметрией. При восстановлении их структуры иногда достаточно одной проекции. Следует отметить, что закрепление и поворот объекта размером в доли микрона являются сложной технической задачей. Существующие методы установки препарата в электронном микроскопе принципиально не позволяют достичь больших углов поворота (свыше ±60°). При увеличении углов происходит перекрытие пучка электронов подложкой, на которой располагается наблюдаемый образец. Изготовление микроманипуляторов, которые позволили бы растянуть образец между двумя остриями игл, обеспечивая тем самым круговой обзор при вращении, — дело будущего. Для иллюстрации описанных выше методов рассмотрим реконструкцию биологической структуры, обладающей спиральной симметрией.
|
1 |
Оглавление
|