Главная > Математическая биофизика клетки
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава десятая. АНАЛИЗ КЛЕТОЧНЫХ СТРУКТУР ПО ИХ ИЗОБРАЖЕНИЯМ. ГЛИЯ—СОСУДЫ, ХРОМОСОМЫ

10.1. Преобразование изображений клеток в цифровую форму

В предыдущей главе сделан акцент на анализе пространственной организации клеточных структур в диапазоне разрешения электронного микроскопа. В этой главе остановимся на методах определения геометрических параметров изображений, полученных с помощью оптического микроскопа, на примерах исследования морфологии хромосом и некоторых срезов ткапи.

Математические методы исследования изображений представляют собой различные способы формального описания двумерных конфигураций оптической плотности с учетом дополнительной информации и целей исследования. В таком виде математическое описание клеточных структур является частным случаем задачи распознавания образов.

Для машинного исследования оптических и геометрических характеристик клеток требуется преобразовать оптическое изображение препарата в цифровой код. Для этого необходим сканирующий оптический микроскоп.

Трудности построения сканирующих оптических микроскопов связаны с необходимостью получения хорошего соотношения сигнал/шум при малой площади сканирующего элемента

Требуемая величина соотношения сигнал/шум зависит от конкретной постановки задачи. Например, для подсчета числа ядер клеток соотношение сигнал/шум допускается а для измерения геометрических параметров с ошибкой не более 2% должно быть Кроме того, существует множество факторов, искажающих форму сигнала, несущего информацию о структуре клетки (дифракция, нестабильность источников света и светоприемников, расфокусировка и т. д.). Влияние этих факторов на точность измерений проанализировано в работах [39, 50]. В настоящее время создано несколько типов сканирующих оптических микроскопов, в которых ошибки в получении информации о структуре клеток сведены к минимуму.

Сканирующие системы осуществляют последовательный просмотр поля изображения, выполняя фиксированные шаги вдоль направления осей х, у, и измеряют оптический сигнал после очередного шага. Таким образом, осуществляются квантование плоскости изображения и представление самого изображения в виде матрицы, связывающей значение оптического сигнала с координатами точки, где он был измерен. Процесс квантования приводит к геометрическим искажениям, которые в общем случае трудно поддаются учету [40—42, 50].

Дискретизация оптической плотности структуры объекта по амплитуде также приводит к различного рода искажениям. Естественно, что квантование значений функции тесно связано с квантованием ее аргументов, однако указанные случаи геометрических искажений предполагали наличие черно-белого изображения, т. е. при принадлежащем к при за пределами А, где А — множество точек объекта. Реальные изображения биологических структур имеют полутона, которые, с одной стороны, обусловлены переменной прозрачностью самих объектов, а с другой — связаны с ограниченным пространственным разрешением приборов, формирующих изображение.

Удобно процесс получения изображения рассматривать в частотной области. С помощью преобразования Фурье распределение интенсивности света на изображении можно представить как результат наложения пространственных синусоидальных составляющих. В таком случае устройство ввода изображения можно рассматривать как фильтр низких частот, хорошо пропускающий низкие пространственные частоты (т. е. крупные детали изображения) и ослабляющий высокие частоты (т. е. мелкие детали).

Частотная характеристика изображения описывается выражением (9.2):

(кликните для просмотра скана)

Восстановление изображения в частотной области может быть осуществлено путем коррекции аппаратной функции системы (см. раздел 9.1):

где частотная характеристика восстановленного изображения, функция, корректирующая частотную характеристику устройства ввода и процесс дискретизации. Сказанное означает, что для восстановления частотной характеристики изображения необходимо соответствующим образом изменить амплитуды его частотных составляющих.

После корректирования частотной характеристики необходимо сделать переход в действительную область и определить истинное распределение интенсивностей света на изображении:

Подобный способ восстановления изображения позволяет уменьшить искажения, вызванные процессом ввода и дискретизацией. Однако он связан с большим количеством вычислений. Кроме того, иногда он малоэффективен, так как значительный подъем частотной характеристики в области высоких частот может вызвать дополнительное «зашумление» изображения. Изображение хромосом на метафазной пластинке является таким изображением, где высокочастотные пространственные гармоники имеют существенное значение. В то же время световой микроскоп, работающий в видимой области, не пропускает высокочастотные составляющие.

Основная трудность при анализе изображений состоит в определении того, что следует считать границей объектов. Поскольку существует непрерывная функция плотности то нельзя объективно указать такого значения уровня ограничения, где плоскость 1(х, у) соответствовала бы реальной форме объекта. В качестве иллюстрации на рис. 114 представлена модель дифракции на хромосоме в предположении, что истинное изображение имело бы во всех точках, принадлежащих хромосоме, значение яркости, равное 32 условным единицам. Как видно, ни одна линия изоплотности не соответствует истинной границе хромосомы.

Естественной моделью объекта являлась бы функция типа:

Рис. 115. Коррекция изображений а — матрица весов; б, в — изображения хромосомы до корректировки при двух уровнях ограничения; г, д - изображения той же хромосомы после корректировки при тех же уровнях ограничения

где уровень плотности объекта, уровень плотности фона. При этом границей объекта является линия разрыва значений определяющая контур объекта Преобразование плотности изображения в соответствии с указанной моделью объекта называют бинаризацией изображения (превращением полутонового изображения в черно-белое).

В настоящее время в распоряжении исследователей имеется много эвристических методов коррекции изображений, обеспечивающих подчеркивание границ объектов [45]. Применяют преобразование изображения с помощью локального оператора Лапласа [46]. В цифровой форме это выражается в виде суммирования с некоторыми весами оптических плотностей в данной и соседних с ней точках (рис. 115, а). Такое преобразование понижает до нуля уровень плотности в районе, где он был примерно постоянным.

Практически распределение весов выбирается исходя из визуального исследования результатов преобразования. Для каждого устройства ввода необходимо свое распределение весов.

На рис. 115, б, д приведены результаты обработки изображения одной хромосомы. Видно, что в результате коррекции бинарное изображение объекта становится менее критичным к выбору порога дискриминации плотности. Вместе с тем преобразование с помощью весовой матрицы требует значительно меньше вычислений (только 12 суммирований на каждую точку растра). Интересный алгоритм для выбора порога в наиболее крутом месте усредненного фронта нарастания плотности предложен в работах [48—49].

Однако, несмотря на большое количество методов для коррекции границ клеток (обычно в литературе они называются методами предобработки), истинные границы удается найти далеко не всегда. Возможно, поэтому многие исследователи рассматривают бинарное преобразование как выбор подходящего уровня ограничения, а весь дальнейший анализ стремятся выполнить так, чтобы на него как можно меньше влияли погрешности определения границ.

1
Оглавление
email@scask.ru