Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава десятая. АНАЛИЗ КЛЕТОЧНЫХ СТРУКТУР ПО ИХ ИЗОБРАЖЕНИЯМ. ГЛИЯ—СОСУДЫ, ХРОМОСОМЫ10.1. Преобразование изображений клеток в цифровую формуВ предыдущей главе сделан акцент на анализе пространственной организации клеточных структур в диапазоне разрешения электронного микроскопа. В этой главе остановимся на методах определения геометрических параметров изображений, полученных с помощью оптического микроскопа, на примерах исследования морфологии хромосом и некоторых срезов ткапи. Математические методы исследования изображений представляют собой различные способы формального описания двумерных конфигураций оптической плотности с учетом дополнительной информации и целей исследования. В таком виде математическое описание клеточных структур является частным случаем задачи распознавания образов. Для машинного исследования оптических и геометрических характеристик клеток требуется преобразовать оптическое изображение препарата Трудности построения сканирующих оптических микроскопов связаны с необходимостью получения хорошего соотношения сигнал/шум при малой площади сканирующего элемента Требуемая величина соотношения сигнал/шум зависит от конкретной постановки задачи. Например, для подсчета числа ядер клеток соотношение сигнал/шум допускается Сканирующие системы осуществляют последовательный просмотр поля изображения, выполняя фиксированные шаги вдоль направления осей х, у, и измеряют оптический сигнал после очередного шага. Таким образом, осуществляются квантование плоскости изображения и представление самого изображения в виде матрицы, связывающей значение оптического сигнала с координатами точки, где он был измерен. Процесс квантования приводит к геометрическим искажениям, которые в общем случае трудно поддаются учету [40—42, 50]. Дискретизация оптической плотности структуры объекта Удобно процесс получения изображения рассматривать в частотной области. С помощью преобразования Фурье распределение интенсивности света на изображении можно представить как результат наложения пространственных синусоидальных составляющих. В таком случае устройство ввода изображения можно рассматривать как фильтр низких частот, хорошо пропускающий низкие пространственные частоты (т. е. крупные детали изображения) и ослабляющий высокие частоты (т. е. мелкие детали). Частотная характеристика изображения описывается выражением (9.2):
(кликните для просмотра скана) Восстановление изображения в частотной области может быть осуществлено путем коррекции аппаратной функции системы (см. раздел 9.1):
где После корректирования частотной характеристики необходимо сделать переход в действительную область и определить истинное распределение интенсивностей света на изображении:
Подобный способ восстановления изображения позволяет уменьшить искажения, вызванные процессом ввода и дискретизацией. Однако он связан с большим количеством вычислений. Кроме того, иногда он малоэффективен, так как значительный подъем частотной характеристики в области высоких частот может вызвать дополнительное «зашумление» изображения. Изображение хромосом на метафазной пластинке является таким изображением, где высокочастотные пространственные гармоники имеют существенное значение. В то же время световой микроскоп, работающий в видимой области, не пропускает высокочастотные составляющие. Основная трудность при анализе изображений состоит в определении того, что следует считать границей объектов. Поскольку существует непрерывная функция плотности Естественной моделью объекта являлась бы функция
Рис. 115. Коррекция изображений а — матрица весов; б, в — изображения хромосомы до корректировки при двух уровнях ограничения; г, д - изображения той же хромосомы после корректировки при тех же уровнях ограничения где В настоящее время в распоряжении исследователей имеется много эвристических методов коррекции изображений, обеспечивающих подчеркивание границ объектов [45]. Применяют преобразование изображения с помощью локального оператора Лапласа [46]. В цифровой форме это выражается в виде суммирования с некоторыми весами оптических плотностей в данной и соседних с ней точках (рис. 115, а). Такое преобразование понижает до нуля уровень плотности в районе, где он был примерно постоянным. Практически распределение весов выбирается исходя из визуального исследования результатов преобразования. Для каждого устройства ввода необходимо свое распределение весов. На рис. 115, б, д приведены результаты обработки изображения одной хромосомы. Видно, что в результате коррекции бинарное изображение объекта становится менее критичным к выбору порога дискриминации плотности. Вместе с тем преобразование с помощью весовой матрицы требует значительно меньше вычислений (только 12 суммирований на каждую точку растра). Интересный алгоритм для выбора порога в наиболее крутом месте усредненного фронта нарастания плотности предложен в работах [48—49]. Однако, несмотря на большое количество методов для коррекции границ клеток (обычно в литературе они называются методами предобработки), истинные границы удается найти далеко не всегда. Возможно, поэтому многие исследователи рассматривают бинарное преобразование как выбор подходящего уровня ограничения, а весь дальнейший анализ стремятся выполнить так, чтобы на него как можно меньше влияли погрешности определения границ.
|
1 |
Оглавление
|