Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.3. Метод графовПри выводе уравнений скоростей ферментативных реакций используется ряд упрощающих допущений. В частности, как правило, принимают, что ферментативная реакция протекает в условиях идеального перемешивания, термо- и рН-статирования и что в реакции очень быстро устанавливается квазистационарное состояние (см. раздел 2.1), в котором все промежуточные формы фермента находятся в равновесии друг с другом. Приставка «квази» означает, что лишь часть переменных достигает стационарных значений, тогда как остальные продолжают медленно меняться. Использование допущения о достижении частью концентраций (биохимической системы квазистационарных значений известно в литературе как метод Боденштейна — Семенова [35, 36]. Этот метод позволяет резко упростить анализ (био)химических систем. Вместо решения систем нелинейных дифференциальных уравнений, описывающих изменение промежуточных веществ в ходе реакции, в соответствии с этим методом удается решать лишь системы алгебраических уравнений, связывающих друг с другом квазистационарные концентрации промежуточных веществ. Основная причина, из-за которой в ферментативной реакции устанавливается квазистационарное состояние, заключается в том, что концентрация фермента обычно на несколько порядков меньше, чем концентрации субстратов, взаимодействующих с ферментом [44, 45]. Как правило, системы алгебраических уравнений, описывающих квазистационарные состояния ферментативных реакций, линейны, так как взаимопревращения между промежуточными формами и комплексами представляются мономолекулярными реакциями. Поэтому для определения квазистационарных концентраций промежуточных веществ используются методы линейной алгебры. В последние годы для этой цели стали широко применяться методы теории графов [2, 46, 47]. Графом ферментативной реакции называется совокупность узлов, соответствующих квазистационарным концентрациям всех ферментных комплексов Например, ферментативная реакция
протекающая через промежуточное образование двух фермент-субстратных комплексов
может быть представлена в квазистационарном состоянии графом, имеющим три узла и шесть направленных ветвей. На графе (1.11) указаны величины ветвей; две из них
Деревом графа, направленным в (см. скан) Так как в исходном графе имеется вся информация, необходимая для расчетов, при вычерчивании деревьев обычно не используют обозначения узлов и величин ветвей. Более того, при достижении некоторого навыка величины деревьев выписывают прямо по исходному графу — без вычерчивания деревьев. Совокупности (на стр. 24) не являются деревьями узла Базовым определителем
(см. скан) а определитель этого графа равен сумме трех базовых определителей:
Начальная квазистадионарная скорость ферментативной реакции выражается через определители графа реакции [2,47] следующим образом:
где Например, для графа (1.11) по формуле (1.14) следует записать
Первый член в числителе положителен, так как распад Квазистационарные концентрации промежуточных комплексов находятся по формуле
Так, в графе (1.11) концентрации свободного фермента и комплексов определяются выражениями
Используя некоторые особенности структуры графа, его можно упростить [47]. Например, несколько ветвей, соединяющих узлы
Симметричные узлы с равными величинами ведущих от них ветвей можно слить в один узел. При этом концентрация комплекса, соответствующего образовавшемуся от слияния узлу, равная сумме концентраций исходных комплексов, а величины ветвей, ведущих к новому узлу
Определитель направленного графа, состоящего из двух подграфов
где Стоит обратить внимание на то, что графы каталитических и, в частности, ферментативных реакций отличаются от обычных топологических графов, широко используемых в различных приложениях [48—51]. Это отличие обусловлено двумя особенностями (био)химических графов: во-первых, для каждого узла химического графа выполняется закон сохранения массы — сумма токов, сходящихся в узле, должна быть равна нулю, а, во-вторых, узловые переменные (концентрации) также связаны законом сохранения — сумма всех узловых концентраций равна полной концентрации фермента
|
1 |
Оглавление
|