Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Энергетический и фазовый спектрыНе всегда легко понять характер изменения комплексной функции, имея графики ее вещественной и мнимой частей, однако в оптике и других областях физики более привычным является использование понятия квадрата модуля преобразования, или энергетического спектра:
Рис. 2.5. Энергетический спектр (слева) и фазовый спектр (справа) стробирующей функции Энергетический спектр является четной функцией частоты и поэтому более прост для понимания. С другой стороны, энергетический спектр содержит в себе по крайней мере половину информации об исходном колебании, так как теряется информация о фазе. Тем не менее для ряда приложений энергетический спектр может оказаться инструментом исследования, который необходим. Энергетический спектр можно получить непосредственно из преобразования Хартли. Имеем
Таким образом, вместо возведения в квадрат вещественной и мнимой частей и их суммирования при данном значении В оптике представляет затруднение измерение фазы преобразования Фурье, однако в анализе сигналов рассмотрение фазовых функций (фазочастотных характеристик) является привычной процедурой, хотя их понимание и толкование требуют определенной подготовки и опыта. Примеры энергетического спектра и фазовой функции иллюстрируются на рис. 2.5. Фазовая функция может быть непосредственно вычислена из выражения
Фаза преобразования Фурье может быть также непосредственно получена из преобразования Хартли
В объяснении характера изменения фазы при изменении частоты оказывается полезным опыт. При интерпретации фазы следует учитывать, что поведение фазы непосредственно связано с амплитудой, причем большие фазовые изменения происходят вблизи нуля амплитуды, и наоборот - незначительные изменения фазы при больших амплитудах. Имеем следующую формулу для определения фазы преобразования Фурье через преобразование Хартли:
Полезной альтернативой одновременному представлению вещественной и мнимой частей является построение траектории на комплексной плоскости путем изображения
Рис. 2.6. Параметрически заданная кривая
Рис. 2.7. Представление комплексного преобразования в виде скрученной кривой, параметр которой обозначен через интервалы, равные 0,2. Вещественная и мнимая части заштрихованы. комплексной, и можно рассматривать ее вещественную и мнимую части как декартовы координаты. Заслуживает внимания тот факт, что при движении по траектории к началу координат скорость «вычерчивания» траектории, измеряемая отношением длины дуги к частотному интервалу, уменьшается таким образом, что угловая скорость «бегущей» точки на траектории остается постоянной. Это свойство отражает линейную природу графа Можно также рассматривать это преобразование в виде трехмерной винтовой траектории, для которой в данном случае можем представить только перспективную проекцию, но может быть сделана проволочная модель этой кривой. На рис. 2.7 показана эта винтовая кривая, дополняющая наше представление еще одним измерением. Траекторию в полярных координатах можно представить в виде проекции винтовой кривой на плоскость В определенном смысле преобразование Хартли может рассматриваться как гладкая форма представления вещественного колебания. Будучи чисто вещественным, преобразование Хартли не требует других способов представления, тогда как другие способы могут быть непосредственно получены из него. Задачи(см. скан) (см. скан) (см. скан)
|
1 |
Оглавление
|