Главная > Системы управления морскими подвижными объектами
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

7.4. Статические пространственные конфигурации и динамическая модель кабель-троса при буксировке глубоководных аппаратов

Форма пространственной конфигурации кабель-троса при буксировке подводного аппарата зависит от режима движения (скорости относительно воды, распределения течений по глубине), особенностей

аппарата и характеристик кабель-троса (диаметр, длина, плавучесть и т. п.). Особенность формы кабель-троса при движении комплекса вдоль заданной линии профиля заключается в том, что по его длине ридианальные углы в изменяются в широких пределах (так же, как и дополнительные меридианальные углы ), но азимутальные углы и углы гидродинамической скорости к в любой точке троса имеют малые значения. Это допущение позволяет представить уравнения связи гибкой нити для данного случая, выраженные в проекциях орта касательной на неподвижные оси, следующим образом:

а уравнения, полученные из условия равновесия сил на элементарном отрезке гибкой нити в стационарном режиме, записать в виде

Нелинейные обыкновенные дифференциальные уравнения (7.30) и (7.31) представляют собой математическое описание статической пространственной конфигурации кабель-троса. Ниже приводятся некоторые результаты исследований, выполненных путем решения уравнений (7.30) и (7.31) на ЦВМ.

На рис. 7.10 приведены кривые зависимости натяжения Т, глубины и расстояния между ПА и судном от скорости буксировки при фиксированной длине кабель-троса 6000 м. Натяжение в точке крепления к судну (у буксирной лебедки) уменьшается с увеличением скорости до 4 м/с и нарастает при дальнейшем увеличении скорости буксировки. При этом ПА всплывает с глубины 6000 до 1000 м, но расстояние между аппаратом и судном увеличивается.

Рис. 7.11 показывает, как изменяются натяжение в точке крепления к судну, длина кабель-троса и расстояние между ПА и судном с увеличением скорости буксировки при поддержании постоянной

глубины погружения ПА на 6000 м. С ростом скорости буксировки до 2 м/с необходимо увеличить длину кабель-троса до 13000 м. Вид статических конфигураций кабель-троса длиной 6000 м в вертикальной плоскости при скоростях буксировки (кривые 1, 2, 3 соответственно) иллюстрирует рис. 7.12.

Рис. 7.10. Статические параметры движения кабель-троса в зависимости от скорости буксировки.

Рис. 7.11. Статические параметры движения кабель-троса при постоянной глубине погружения ПА.

Особенность движения кабель-троса при буксировке ПА заключается в том, что оно происходит с малыми боковыми и вертикальными скоростями по сравнению со скоростью продольного перемещения кабеля. Для любой его точки соблюдаются условия и скорость поступательного продольного движения практически никогда не превосходит м/с. Кроме того, стремятся, чтобы буксировка протекала плавно, без резких усилий в кабеле. При этих условиях допускается раздельный анализ динамики движения кабель-троса в вертикальной (продольное движение) и горизонтальной (боковое движение) плоскостях. Уравнения продольного движения записываются в виде

а бокового

Все коэффициенты рассчитываются при постоянных значениях гидродинамической скорости и ее касательной составляющей и неизменном во времени натяжении кабель-троса, определяемого выражением

Дифференциальные уравнения в частных производных (7.32) и (7.33) решаются при начальных , а также граничных условиях на нижнем и верхнем концах кабель-троса, причем последние играют роль управляющих воздействий и складываются из соответствующих проекций скорости движения судна-буксира и изменения длины кабеля в результате работы буксирной лебедки:

Рис. 7.12. Статические конфигурации кабель-троса в вертикальной плоскости при разных скоростях буксировки ПА.

Рис. 7.13. Изменение кинематических параметров движения ПА в вертикальной плоскости.

Рис. 7.14. Изменение кинематических параметров движения ПА.

Численное решение уравнений динамики кабель-троса может быть получено методом конечных элементов, который позволяет путем дискретизации пространственного аргумента перейти от краевой задачи в частных производных к задаче Коши и системе обыкновенных дифференциальных уравнений. Ниже приводятся некоторые результаты исследований.

На рис. 7.13 приведены кривые изменения продольной и вертикальной скоростей движения ПА относительно их начальных установившихся значений, а также приращения координат центра масс аппарата в результате изменения длины кабель-троса на величину . Аналогичные кривые изменения кинематических параметров ПА изображены на рис. 7.14.

Categories

1
Оглавление
email@scask.ru