Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 4. ФУНКЦИОНАЛЬНЫЕ СТРУКТУРЫ СИСТЕМ УПРАВЛЕНИЯ МПО4.1. Общая функциональная структура СУ МПОСистемы управления движением (СУД) занимают особое положение среди судовых автоматических систем. Для них управляемым объектом оказывается корабль в целом. Функция управления этих систем заключается в автоматической стабилизации, т. е. поддержании на заданном уровне кинематических параметров движения МПО, которые определяют в любой момент времени положение, скорость перемещения и ориентацию корабля в пространстве. Некоторые СУ МПО обеспечивают автоматическое или автоматизированное маневрирование, которое предполагает изменение по определенному закону значений кинематических параметров. Автоматические системы управления движением (АСУД) морских подвижных объектов разнообразны. Наиболее распространены системы управления курсом (авторулевые), которыми оборудованы практически все современные типы МПО. Дальнейшим развитием авторулевых можно назвать системы стабилизации путевого угла, используемые на судах на воздушной подушке, а также системы стабилизации боковых отклонений, необходимые при движении судна по заданной траектории (заданной линии профиля) во время выполнения геолого-геофизических исследований и поисково-разведочных работ на шельфе и в океане. Появление буровых судов потребовало создания систем динамического позиционирования, обеспечивающих удержание судна в заданной точке над устьем скважины, а перспектива добычи твердых полезных ископаемых в океане — разработки систем динамической стабилизации судна относительно движущихся глубоководных агрегатов. Для судов с динамическими принципами поддержания (СДПП) в большинстве своем необходим повышенный уровень автоматизации движения. Неотъемлемой составной частью СПК с глубоко погруженными управляемыми крыльями является автоматическая система стабилизации ординаты центра масс, принципиально неотделимая от системы стабилизации килевой качки. Без такой системы невозможен нормальный ходовой режим корабля. Корабли-экранопланы требуют стабилизации вертикальной, бортовой и килевой качки. Предназначенные для этого автоматические системы совместно с системой управления курсом обеспечивают нормальное пространственное движение корабля. Подобную систему имеют автономные подводные аппараты, для которых дополнительно предусматривается возможность автоматического выхода на заданную глубину погружения. Автоматическое управление движением существенно повышает качество функционирования МПО и позволяет сокращать численность экипажа. В настоящее время именно сокращение личного состава судна рассматривается как основное направление повышения экономичности морских перевозок. Однако определяющими факторами являются возможность успешного выполнения целевого назначения МПО, обеспечение безопасности плавания и повышение мореходности. Рис. 4.1. Структура системы управления МПО. При всем многообразии СУ МПО, различающихся между собой по назначению, виду объекта, составу технических средств, элементной базе, системотехнические принципы их формирования остаются общими, а функциональные структуры подобными. Они строятся по принципу систем с обратными связями по состоянию в соответствии с типовой структурой, представленной на рис. 4.1. Любую систему управления движением с обратной связью по наблюдаемым переменным образуют: управляемый объект (УО), датчики Вычислительное устройство, система отображения информации и устройство введения данных от оператора выделены в единую конструкцию, получившую название пульт управления движением" (ПУД). Состояние управляемого объекта оценивается мгновенным значением вектора Исполнительные органы СУД включают в себя механизмы и приводы технических средств, обеспечивающих создание управляющих сил и моментов на корпусе корабля. Ими могут быть движители с механизмами изменения шага винтов, вертикальные рули с электрогидроприводами рулевого устройства, винтовые движительно-рулевые колонки, подруливающие устройства и т. п. Изменение состояния исполнительных органов осуществляется с помощью сигналов управления, образующих вектор Датчики кинематических параметров движения и состояния исполнительных органов представляют собой информационное обеспечение системы. Вектор измеряемых переменных состояния Главная часть СУ МПО это вычислительное устройство Управление в СУ МПО может осуществляться также по командам оператора (О), принимающего решения на основе данных, поступающих к нему от средств отображения информации СОИ. Состав исполнительных органов и информационное обеспечение индивидуальны для конкретного типа АСУД и зависят от ее назначения и вида МПО. Для каждой системы требуется и свое вычислительное устройство аналового или цифрового типа, реализующее закон управления, присущий конкретному виду СУ МПО.
|
1 |
Оглавление
|