Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике 1.2. ИСТОРИЯ КОДИРОВАНИЯ, КОНТРОЛИРУЮЩЕГО ОШИБКИИстория кодирования, контролирующего ошибки, началась в 1948 г. публикацией знаменитой статьи Клода Шеннона. Шеннон показал, что с каждым каналом связано измеряемое в битах в секунду и называемое пропускной способностью канала число С, имеющее следующее значение. Если требуемая от системы связи скорость передачи информации R (измеряемая в битах в секунду) меньше С, то, используя коды, контролирующие ошибки, для данного канала можно построить такую систему связи, что вероятность ошибки на выходе будет сколь угодно мала. В самом деле, из шепноновской теории информации следует тот важный вывод, что построение слишком хороших каналов является расточительством; экономически выгоднее использовать кодирование. Шеннон, однако, не указал, как найти подходящие коды, а лишь доказал их существование. В пятидесятые годы много усилий было потрачено на попытки построения в явном виде классов кодов, позволяющих получить обещанную сколь угодно малую вероятность ошибки, но результаты были скудными. В следующем десятилетии решению этой увлекательной задачи уделялось меньше внимания; вместо этого исследователи кодов предприняли длительную атаку по двум основным направлениям. Первое направление носило чисто алгебраический характер и преимущественно рассматривало блоковые коды. Первые блоковые коды были введены в 1950 г., когда Хэмминг описал класс блоковых кодов, исправляющих одиночные ошибки. Коды Хэмминга были разочаровывающе слабы по сравнению, с обещанными Шелноном гораздо более сильными кодами. Несмотря на усиленные исследования, до конца пятидесятых годов не было построено лучшего класса кодов. В течение эгого периода без какой-либо общей теории были найдены многие коды с малой длиной блока. Основной сдвиг произошел, когда Боуз и Рой-Чоудхури [1960] и Хоквингем [1959) нашли большой класс кодов, исправляющих кратные ошибки (коды БЧХ), а Рид и Соломон [1960] нашли связанный с кодами БЧХ класс кодов для недвоичных каналов. Хотя эти коды остаются среди наиболее важных классов кодов, общая теория блоковых кодов, контролирующих ошибки, с тех пор успешно развивалась, и время от времени удавалось открывать новые коды. Открытие кодов БЧХ привело к поиску практических методов построения жестких или мягких реализаций кодеров и декодеров. Первый хороший алгоритм был предложен Питерсоном. Впоследствии мощный алгоритм выполнения описанных Питерсоном вычислений был предложен Берлекэмпом и Месси, и их реализация вошла в практику как только стала доступной новая цифровая техника. Второе направление исследований по кодированию носило скорее вероятностный характер. Ранние исследования были связаны с оценками вероятностей ошибки для лучших семейств блоковых кодов, несмотря на то что эти лучшие коды не были известны. С этими исследованиями были связаны попытки понять кодирование и декодирование с вероятностной точки зрения, и эти попытки привели к появлению последовательного декодирования. В последовательном декодировании вводится класс неблоковых кодов бесконечной длины, которые можно описать деревом и декодировать с помощью алгоритмов поиска по дереву. Наиболее полезными древовидными кодами являются коды с тонкой структурой, известные под названием сверточных кодов. Эти коды можно генерировать с помощью пеней линейных регистров сдвига, выполняющих операцию свертки информационной последовательности. В конце 50-х годов для сверточных кодов были успешно разработаны алюритмы последовательного декодирования. Интересно, что наиболее простой алгоритм декодирования — алгоритм Витерби - не был разработан для этих кодов до 1967 г. Применительно к сверточным кодам умеренной сложности алгоритм Витерби пользуется широкой популярностью, но для более мощных сверточных кодов он не практичен. В 70-х годах эти два направления исследований опять стали переплетаться. Теорией сверточных кодов занялись алгебраисты, представившие ее в новом свете. В теории блоковых кодов за это время удалось приблизиться к кодам, обещанным Шенноном: были предложены две различные схемы кодирования (одна Юстесеном, а другая Гопгюй), позволяющие строить семейства кодов, которые одновременно могут иметь очень большую длину блока и очень хорошие характеристики. Обе схемы, однако, имеют практические ограничения и надо ждать дальнейших успехов. Между тем к началу 80-х годов кодеры и декодеры начали появляться в новейших конструкциях цифровых систем связи и цифровых систем памяти.
|
1 |
Оглавление
|