Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.3. Принцип наблюдаемостиРегулярные конфигурации представляют собой логические конструкции, введенные для того, чтобы можно было дать точные определения для различных понятий регулярности. Эти конфигурации не всегда поддаются непосредственному наблюдению; наблюдатель обычно может «видеть» лишь их «поверхность», но не их внутреннюю структуру. Формализм теории образов должен, следовательно, определять, как из регулярных конфигураций возникают наблюдаемые объекты. Допустим, что мы располагаем неким идеальным наблюдателем, снабженным точными приборами, так что на время мы можем забыть об ошибках измерений и т. п. При изучении таким идеальным наблюдателем некоторой конфигурации с возможны два случая. В первом случае он получает полную информацию о конфигурации с, так что оказывается в состоянии однозначно идентифицировать ее на множестве регулярных конфигураций В противополож- ном случае он теряет информацию и, следовательно, в состоянии идентифицировать конфигурацию с точностью до принадлежности ее некоторому подмножеству Формализуем это, считая, что на множестве регулярных конфигураций существует некоторое отношение эквивалентности Правило идентификации не есть отражение несовершенства измерительных устройств, связанных с возникновением таких явлений, как шум, — об этом речь пойдет в следующем разделе. На самом деле, подобные дефекты не удается хорошо описывать с помощью отношений эквивалентности. Правило идентификации дает интерпретацию регулярной конфигурации в категориях ее функционирования, так, как она воспринимается идеальным наблюдателем. Классы эквивалентности, индуцированные на множестве регулярных конфигураций Если конфигурации мы считаем формулами, то изображения являются функциями. Они выражают значение формул, и, естественно, одной функции могут соответствовать несколько формул. Изображения являются семантическими конструкциями. Для того чтобы проиллюстрировать способ выбора правила идентификации Второй случай значительно четче подчеркивает различия между конфигурацией и изображением. Интерпретация конфигурации вычислительных модулей представляет собой интерпретацию некоторой функции. Конфигурация является формулой, или алгоритмом, или машинной программой. Изображение — это функция, реализованная посредством этой конфигурации. В определение функции как часть входит указание ее области определения, которая в случае конфигурации задается посредством открытых входных связей. Подобным же образом множество значений можно задать открытыми выходными связями. Отсюда становится очевидно, что изображение должно содержать информацию относительно несоединенных (внешних) связей конфигурации. Это делает возможной комбинацию изображений при помощи соединения открытых связей в соответствии с комбинаторным правилом Я. В таком случае пространство В случае (III) мы рассматриваем правило В случае (IV) конфигурация представляет собой грамматический разбор (разложение, или вывод) грамматически правильного предложения, составленного из лексических символов. Как хорошо известно, грамматический разбор вполне может оказаться неоднозначно определенным, так что одно изображение может содержать несколько конфигураций. Кроме того, в изображение следует включать первую входную и последнюю выходную связи конфигурации с. Если, в частности, эти связи представляют начальное и заключительное состояния соответственно, то в качестве изображения выступает некоторое грамматически правильное предложение, другими словами, грамматическая составляющая, или фраза. В случае (V), где речь идет о конечной или бесконечной квадратной решетке, мы, естественно, будем отождествлять две конфигурации, если они содержат одни и те же образующие, атомы, и если у них открыты одни и те же связи. Последнее необходимо для того, чтобы иметь возможность соединять изображения между собой. В конфигурации мы определяем также и внутренние связи. Отметим, что в изображении образующие не помечаются с помощью двойной индексации; образующие не должны даже однозначно определяться. Сейчас это не имеет особого значения, однако когда мы рассматриваем реально (а не только идеально) наблюдаемые изображения, то оказывается, что это обстоятельство имеет важные последствия. При математической реализации Роль анализа образов начинает теперь проявляться более отчетливо, по крайней мере при введении допущения об идеальном наблюдателе. Этот наблюдатель снабжается информацией, содержащейся в изображении, — ни больше ни меньше. Наблюдатель пытается восстановить внутреннюю структуру, комбинаторную регулярность, составляющую основу изображения или того класса изображений, к которому оно принадлежит. Заимствуя термин из лингвистики, но используя его в ином смысле, можно сказать, что, анализируя образ, мы пытаемся постичь глубинную структуру, имея доступ лишь к поверхностной структуре изучаемого регулярного явления. Можно было бы сказать, что поиск этой скрытой истины ведется в герменевтической традиции После того как мы получили алгебру изображений, следующим естественным уровнем абстрагирования является образ. Под образом или классом образов мы подразумеваем некоторое подмножество множества Оба процесса формирования — «конфигурации информации, оно собирает вместе изображения, отличающиеся несущественными деталями. Изображение представляет некоторое понятие — функцию в очень широком смысле слова. Образ — это обобщение понятия такого рода.
|
1 |
Оглавление
|