Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8.2. Весовые функцииКак должен декодер выбирать наиболее вероятный из векторов ошибок с одним и тем же синдромом? В двоичном случае ответ сводится к выбору слова с минимальным весом, где вес слова определяется как число единиц среди его 8.21. Определение. Весом Хэмминга слова
8.22. Определение. Весом Ли слова
Вес Хэмминга и вес Ли могут быть определены и для тех алфавитов из В случае метрики Ли мы будем предполагать, что Системы с ортогональной модуляцией хорошо описываются метрикой Хэмминга. В частности, можно показать, что если буквы алфавита модулируются в виде ортогональных сигналов, на которые в канале накладывается аддитивный белый гауссов шум, то все ошибочные переходы символов друг в друга равновероятны. Следовательно, вероятность вектора ошибок зависит только от числа его ненулевых координат и не зависит от конкретного значения этих ненулевых координат. Метрика Хэмминга хорошо позволяет выделить более вероятные ошибки, предполагая вероятными ошибки малого веса, а ошибки с большим весом — маловероятными. Метрика Ли хорошо соответствует схемам с фазовой модуляцией. Если на фазокодированные сигналы накладывается аддитивный гауссов шум, то намного более вероятно, что шум переведет переданную букву в букву, близкую по фазе, чем в букву с сильно отличающейся фазой. Значения ±2 ненулевых координат в векторе ошибок значительно менее вероятны, чем значения ±1. Метрика Ли дает хорошее приближение к реальной ситуации; в общем случае она предполагает ошибки малого веса более вероятными. В случае каналов с амплитудной модуляцией и аддитивным гауссовым шумом и метрика Хэмминга и метрика Ли обладают некоторыми очевидными недостатками. Вероятность перепутать наибольшую и наименьшую амплитуды значительно меньше, чем вероятность перепутать две соседние амплитуды, расположенные около середины алфавита. Однако, если число символов в алфавите велико, то метрика Ли дает приемлемое приближение. Описание с помощью метрики Хэмминга является более грубым. Для некоторых каналов оказываются полезными совсем другие определения весовых функций. Однако мы сосредоточим наше внимание на метрике Хэмминга и метрике Ли. При построении систем модуляции и демодуляции приходится рассматривать многие вопросы. Необходимо выбрать множество сигналов и правило демодуляции. В общем случае этот выбор существенно зависит от конкретных характеристик канала связи. При этом приходится учитывать мощность шума, спектр шума, частотные ограничения на передатчик, ограничения на мощность передатчика и возможность межсимвольной интерференции. Этим задачам посвящено большое количество работ, но мы на них останавливаться не будем. Заинтересованный читатель может обратиться к книгам Давенпорта и Рута [1958] или книге Возенкрафта и Джекобса [1965]. Для понимания последующих глав этой книги абсолютно необходимым является лишь общее знакомство с этой областью. Мы полагаем, что модулятор, демодулятор и весовая функция (Хэмминга или Ли), заданы, и концентрируем свое внимание на задаче исправления ошибок (или ошибок и стираний) демодулятора с помощью подходящих способов кодирования и декодирования. Задача(см. скан)
|
1 |
Оглавление
|