4.2. Упруго/вязко-идеально пластические грунты
В работе Ольшака и Пэжины [86] предложены определяющие уравнения для грунтов, учитывающие их реологические свойства и чувствительность грунтов к изменению скорости деформации.
Для описания динамического поведения упруго/вязко-идеально пластического грунта в работе [86] принят частный случай статической функции пластического течения
где — первый инвариант тензора напряжений, а — параметр, характеризующий скорость расширения грунта, постоянная, представляющая предел текучести грунта.
Определяющие уравнения (2.3) в случае упруго/вязко-идеально пластической среды и функции определенной формулой (4.15), будут иметь следующий вид:
Динамическое условие пластичности грунта имеет следующий вид:
Скорость объемного расширения грунта, в силу (4.16), выражается как
Из этого уравнения следует, что неупругим деформациям сопутствует изменение объема, когда Это свойство называется дилатансией грунта.
Можно показать, что в случае из (4.16) получаются уравнения теории течения. При из уравнения (4.17), согласно (4.15), получим
следовательно, из определения функции вытекает, что в этом предельном случае величина является неопределенным параметром или
Это — определяющие соотношения для случая упруго-идеально пластических грунтов.