5.6. Основные числовые характеристики случайных величин и их выборочные аналоги
Итак, исчерпывающие сведения об интересующем нас законе распределения вероятностей можно задать и в виде полигона вероятностей (в дискретном случае), и в виде функции распределения (в общем случае), и в виде функции плотности (в непрерывном случае).
Однако при практическом изучении генеральной совокупности зачастую оказывается достаточной гораздо более скромная информация в виде нескольких числовых характеристик распределения, позволяющих оценить такие его свойства, как центр группирования значений исследуемой случайной величины, мера их случайного рассеивания, степень взаимозависимости различных компонент изучаемого многомерного признака. Так, например, при изучении закона распределения заработной платы работников интересуются в первую очередь средней заработной платой и одной из мер ее случайного рассеивания — коэффициентом дифференциации или дисперсией. К тому же подавляющее большинство используемых в статистических приложениях модельных законов распределения (биномиальный, пуассоновский, Парето, нормальный, логарифмически-нормальный, экспоненциальный и др., см. гл. 6) может быть однозначно восстановлено по одной двум своим числовым характеристикам, например по среднему значению и дисперсии.