Главная > Прикладная статистика: Основы моделирования и первичная обработка данных
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.1.5. Нормальное (гауссовское) распределение.

Это распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению оно впервые рассматривалось А. Муавром еще в 1733 г. (см. ниже теорему Муавра — Лапласа, § 7.3). Некоторое время спустя нормальное распределение было снова открыто и изучено независимо друг от друга К. Гауссом (1809 г.) и П. Лапласом (1812 г.). Оба ученых пришли к нормальной функции в связи со своей работой по теории ошибок наблюдений. Идея их объяснения механизма формирования ьормально распределенных случайных величин заключается в следующем. Постулируется, что значения исследуемой непрерывной случайной величины формируются под воздействием очень большого числа независимых случайных факторов, причем сила воздействия каждого отдельного фактора мала и не может превалировать среди остальных, а характер воздействия — аддитивный (т. е. при воздействии случайного фактора F на величину а получается величина ), где случайная «добавка», мала и равновероятна по знаку. Можно показать, что функция плотности случайных величин подобного типа имеет вид

где — параметры закона, интерпретируемые соответственно как среднее значение и дисперсия данной случайной величины (в виду особой роли нормального распределения мы будем использовать специальную символику для обозначения его функции плотности и функции распределения).

Соответствующая функция распределения нормальной случайной величины обозначается и задается соотношением

Условимся называть нормальный закон с параметрами стандартным, а его функции плотности и распределения обозначать соответственно

Во многих случайных величинах, изучаемых в экономике, технике, медицине, биологии и в других областях, естественно видеть суммарный аддитивный эффект большого числа независимых причин. Но центральное место нормального закона не следует объяснять его универсальной приложимостью, как это было принято долгое время (по-видимому, под влиянием блестящих работ К. Гаусса и П. Лапласса) В этом смысле нормальный закон — это один из многих типов распределения, имеющихся в природе, правда, с относительно большим удельным весом практической приложимости. И потому нам понятна ирония, звучащая в известном высказывании Липмана (цитируемом А. Пуанкаре в своем труде «Исчисление вероятностей», Париж, 1912 г.): «Каждый уверен в справедливости нормального закона: экспериментаторы — потому, что они думают, что это математическая теорема; математики — потому, что они думают, что это экспериментальный факт». Однако не следует упускать из виду, что полнота теоретических исследований, относящихся к нормальному закону, а также сравнительно простые математические свойства делают его наиболее привлекательным и удобным в применении. Даже в случае отклонения исследуемых экспериментальных данных от нормального закона существует по крайней мере два пути его целесообразной эксплуатации: а) использовать его в качестве первого приближения; при этом нередко оказывается, что подобное допущение дает достаточно точные с точки зрения конкретных целей исследования результаты; б) подобрать такое преобразование исследуемой случайной величины , которое видоизменяет исходный «не нормальный» закон распределения, превращая его в нормальный. Удобным для статистических приложений является и свойство «самовоспроизводимости» нормального закона, заключающееся в том, что сумма любого числа нормально распределенных случайных величин тоже подчиняется нормальному закону распределения.

Кроме того, закон нормального распределения имеет большое теоретическое значение: с его помощью выведен целый ряд других важных распределений, построены различные статистические критерии и т. п. и -распределения и опирающиеся на них критерии, см. п. 6.2.1-6.2.3, а также гл. 11).

Графики нормальных плотностей приведены на рис. 5.5, 5.6, 5.10 и 5.11.

Основные числовые характеристики нормального закона:

Двумерный нормальный закон описывает совместное распределение двумерной случайной величины с непрерывными компонентами механизм формирования значений которых тот же, что и в одномерном случае, причем множества случайных факторов, под воздёйствием которых формируются значения вообще говоря, пересекаются (отсюда возможная зависимость и ).

Введем в рассмотрение основные числовые характеристики двумерной случайной величины

где

Совместная двумерная плотность нормального закона может быть записана в виде

или в виде

где верхний индекс «штрих» означает транспонирование матрицы или вектора, — определитель ковариационной матрицы, а — матрица, обратная к ковариационной. Изображение поверхности плотности двумерного нормального закона приведено на рис. 5.7.

Частные плотности могут быть получены из совместной по формуле (5.15):

Эти формулы означают, что частные законы распределения компонент двумерного нормального закона сами являются одномерными нормальными законами с параметрами соответственно

Условные плотности получаются с использованием общих Формул (5.16) и (5.16):

Отсюда следует в частности, что условное распределение компоненты при фиксированном значении другой компоненты снова описывается нормальным законом, параметр среднего значения которого, как и следовало ожидать, зависит от фиксированного значения

и дисперсия которого не зависит от и равна

Многомерный нормальный закон описывает совместное распределение -мерной случайной величины с непрерывными компонентами механизм формирования значений каждой из которых тот же, что и в одномерном случае, причем множества случайных факторов, под воздействием которых формируются значения вообще говоря, пересекаются (отсюда их возможная взаимозависимость). Задавшись -мерным вектор-столбцом средних значений компонент и (-матрицей ковариации (см. п. 5.6.7), можно выписать -мерную совместную плотность многомерного нормального закона:

Здесь, как и прежде, — вектор-столбец текущих переменных, а — определитель ковариационной матрицы.

Вырожденность матрицы (т. е. равенство нулю определителя ) делает соответствующее многомерное распределение вырожденным (или несобственным); это означает, в частности, что разброс значений исследуемого многомерного признака сосредоточен в подпространстве меньшей, чем размерности. За исключением некоторых специальных случаев мы всегда будем полагать, что нами уже осуществлен переход в это подпространство меньшей размерности, так что в наших рассуждениях предполагается

1
Оглавление
email@scask.ru